Chromosome-scale scaffolding of the black raspberry ( L.) genome based on chromatin interaction data.

TitleChromosome-scale scaffolding of the black raspberry ( L.) genome based on chromatin interaction data.
Publication TypeJournal Article
Year of Publication2018
AuthorsJibran, R, Dzierzon, H, Bassil, N, Bushakra, JM, Edger, PP, Sullivan, S, Finn, CE, Dossett, M, Vining, KJ, VanBuren, R, Mockler, TC, Liachko, I, Davies, KM, Foster, TM, Chagné, D
JournalHortic Res
Date Published2018

Black raspberry ( L.) is a niche fruit crop valued for its flavor and potential health benefits. The improvement of fruit and cane characteristics via molecular breeding technologies has been hindered by the lack of a high-quality reference genome. The recently released draft genome for black raspberry (ORUS 4115-3) lacks assembly of scaffolds to chromosome scale. We used high-throughput chromatin conformation capture (Hi-C) and Proximity-Guided Assembly (PGA) to cluster and order 9650 out of 11,936 contigs of this draft genome assembly into seven pseudo-chromosomes. The seven pseudo-chromosomes cover ~97.2% of the total contig length (~223.8 Mb). Locating existing genetic markers on the physical map resolved multiple discrepancies in marker order on the genetic map. Centromeric regions were inferred from recombination frequencies of genetic markers, alignment of 303 bp centromeric sequence with the PGA, and heat map showing the physical contact matrix over the entire genome. We demonstrate a high degree of synteny between each of the seven chromosomes of black raspberry and a high-quality reference genome for strawberry ( L.) assembled using only PacBio long-read sequences. We conclude that PGA is a cost-effective and rapid method of generating chromosome-scale assemblies from Illumina short-read sequencing data.

Alternate JournalHortic Res
PubMed ID29423238
PubMed Central IDPMC5802725