Biblio
“Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle.”, Physiol Genomics, vol. 29, no. 3, pp. 312-9, 2007.
, “Identification of internal control genes for quantitative polymerase chain reaction in mammary tissue of lactating cows receiving lipid supplements.”, J Dairy Sci, vol. 92, no. 5, pp. 2007-19, 2009.
, “Gene networks driving bovine milk fat synthesis during the lactation cycle.”, BMC Genomics, vol. 9, p. 366, 2008.
, “Gene networks driving bovine mammary protein synthesis during the lactation cycle.”, Bioinform Biol Insights, vol. 5, pp. 83-98, 2011.
, , , “Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation.”, PPAR Res, vol. 2013, p. 684159, 2013.
, “Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development.”, BMC Genomics, vol. 11, p. 331, 2010.
, “Functional adaptations of the transcriptome to mastitis-causing pathogens: the mammary gland and beyond.”, J Mammary Gland Biol Neoplasia, vol. 16, no. 4, pp. 305-22, 2011.
, , , “Evaluation of Suitable Internal Control Genes for RT-qPCR in Yak Mammary Tissue during the Lactation Cycle.”, PLoS One, vol. 11, no. 1, p. e0147705, 2016.
, “Effects of the peroxisome proliferator-activated receptor-alpha agonists clofibrate and fish oil on hepatic fatty acid metabolism in weaned dairy calves.”, J Dairy Sci, vol. 93, no. 6, pp. 2404-18, 2010.
, “Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows.”, J Dairy Sci, vol. 91, no. 9, pp. 3300-10, 2008.
, “The dilution effect and the importance of selecting the right internal control genes for RT-qPCR: a paradigmatic approach in fetal sheep.”, BMC Res Notes, vol. 8, p. 58, 2015.
, “Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows.”, J Dairy Sci, vol. 89, no. 9, pp. 3563-77, 2006.
, “Characterization of Madin-Darby bovine kidney cell line for peroxisome proliferator-activated receptors: temporal response and sensitivity to fatty acids.”, J Dairy Sci, vol. 91, no. 7, pp. 2808-13, 2008.
, “Blood immunometabolic indices and polymorphonuclear neutrophil function in peripartum dairy cows are altered by level of dietary energy prepartum.”, J Dairy Sci, vol. 95, no. 4, pp. 1749-58, 2012.
, “Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and posttranscriptional regulation.”, Physiol Genomics, vol. 48, no. 4, pp. 231-56, 2016.
, “Adipose-derived mesenchymal stem cells enhance healing of mandibular defects in the ramus of swine.”, J Oral Maxillofac Surg, vol. 70, no. 3, pp. e193-203, 2012.
, “Adipose tissue depots of Holstein cows are immune responsive: inflammatory gene expression in vitro.”, Domest Anim Endocrinol, vol. 38, no. 3, pp. 168-78, 2010.
, “Adipogenic and energy metabolism gene networks in longissimus lumborum during rapid post-weaning growth in Angus and Angus x Simmental cattle fed high-starch or low-starch diets.”, BMC Genomics, vol. 10, p. 142, 2009.
, “ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation.”, J Nutr, vol. 138, no. 6, pp. 1019-24, 2008.
, “2,4-Thiazolidinedione Treatment Improves the Innate Immune Response in Dairy Goats with Induced Subclinical Mastitis.”, PPAR Res, vol. 2017, p. 7097450, 2017.
,