Biblio
Found 63 results
Author [ Title] Type Year Filters: Keyword is Embryo, Nonmammalian [Clear All Filters]
“Novel liquid chromatography-mass spectrometry method shows that vitamin E deficiency depletes arachidonic and docosahexaenoic acids in zebrafish (Danio rerio) embryos.”, Redox Biol, vol. 2, pp. 105-13, 2013.
, “Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine.”, J Neurosci, vol. 22, no. 24, pp. 10731-41, 2002.
, “Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish.”, Toxicology, vol. 291, no. 1-3, pp. 83-92, 2012.
, “Muscular contractions in the zebrafish embryo are necessary to reveal thiuram-induced notochord distortions.”, Toxicol Appl Pharmacol, vol. 212, no. 1, pp. 24-34, 2006.
, “Multidimensional in vivo hazard assessment using zebrafish.”, Toxicol Sci, vol. 137, no. 1, pp. 212-33, 2014.
, “Multidimensional chemobehavior analysis of flavonoids and neuroactive compounds in zebrafish.”, Toxicol Appl Pharmacol, vol. 344, pp. 23-34, 2018.
, “Mono-substituted isopropylated triaryl phosphate, a major component of Firemaster 550, is an AHR agonist that exhibits AHR-independent cardiotoxicity in zebrafish.”, Aquat Toxicol, vol. 154, pp. 71-9, 2014.
, “MicroRNAs control neurobehavioral development and function in zebrafish.”, FASEB J, vol. 26, no. 4, pp. 1452-61, 2012.
, “Media ionic strength impacts embryonic responses to engineered nanoparticle exposure.”, Nanotoxicology, vol. 6, no. 7, pp. 691-9, 2012.
, ,
“Investigating the impact of chronic atrazine exposure on sexual development in zebrafish.”, Birth Defects Res B Dev Reprod Toxicol, vol. 95, no. 4, pp. 276-88, 2012.
, “Introduction to zebrafish: current discoveries and emerging technologies for neurobehavioral toxicology and teratology.”, Neurotoxicol Teratol, vol. 33, no. 6, p. 607, 2011.
, “An interview with Robert Tanguay, Ph.D. Interviewed by Vicki Glaser.”, Zebrafish, vol. 4, no. 3, pp. 163-8, 2007.
, “The influences of parental diet and vitamin E intake on the embryonic zebrafish transcriptome.”, Comp Biochem Physiol Part D Genomics Proteomics, vol. 10, pp. 22-9, 2014.
, “Identification of zebrafish ARNT1 homologs: 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in the developing zebrafish requires ARNT1.”, Mol Pharmacol, vol. 69, no. 3, pp. 776-87, 2006.
, “High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes.”, Arch Toxicol, vol. 90, no. 6, pp. 1459-70, 2016.
, “Gold nanoparticles disrupt zebrafish eye development and pigmentation.”, Toxicol Sci, vol. 133, no. 2, pp. 275-88, 2013.
, , “Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish.”, Toxicol Appl Pharmacol, vol. 229, no. 1, pp. 44-55, 2008.
, “Exploiting lipid-free tubing passive samplers and embryonic zebrafish to link site specific contaminant mixtures to biological responses.”, Chemosphere, vol. 79, no. 1, pp. 1-7, 2010.
, “Ethanol-dependent toxicity in zebrafish is partially attenuated by antioxidants.”, Neurotoxicol Teratol, vol. 28, no. 4, pp. 497-508, 2006.
, “Ethanol- and acetaldehyde-mediated developmental toxicity in zebrafish.”, Neurotoxicol Teratol, vol. 26, no. 6, pp. 769-81, 2004.
, “Endosulfan I and endosulfan sulfate disrupts zebrafish embryonic development.”, Aquat Toxicol, vol. 95, no. 4, pp. 355-61, 2009.
, “Embryonic toxicity changes of organic nanomaterials in the presence of natural organic matter.”, Sci Total Environ, vol. 426, pp. 423-9, 2012.
, “Early life stage trimethyltin exposure induces ADP-ribosylation factor expression and perturbs the vascular system in zebrafish.”, Toxicology, vol. 302, no. 2-3, pp. 129-39, 2012.
,