Biblio
“ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation.”, J Nutr, vol. 138, no. 6, pp. 1019-24, 2008.
, , “Fine metabolic regulation in ruminants via nutrient-gene interactions: saturated long-chain fatty acids increase expression of genes involved in lipid metabolism and immune response partly through PPAR-α activation.”, Br J Nutr, vol. 107, no. 2, pp. 179-91, 2012.
, “Functional adaptations of the transcriptome to mastitis-causing pathogens: the mammary gland and beyond.”, J Mammary Gland Biol Neoplasia, vol. 16, no. 4, pp. 305-22, 2011.
, “Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development.”, BMC Genomics, vol. 11, p. 331, 2010.
, “Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation.”, PPAR Res, vol. 2013, p. 684159, 2013.
, “Gene expression ratio stability evaluation in prepubertal bovine mammary tissue from calves fed different milk replacers reveals novel internal controls for quantitative polymerase chain reaction.”, J Nutr, vol. 138, no. 6, pp. 1158-64, 2008.
, “Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARgamma signaling..”, BMC Genomics, vol. 10, p. 542, 2009.
, “Gene networks driving bovine mammary protein synthesis during the lactation cycle.”, Bioinform Biol Insights, vol. 5, pp. 83-98, 2011.
, “Gene networks driving bovine milk fat synthesis during the lactation cycle.”, BMC Genomics, vol. 9, p. 366, 2008.
, “Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle.”, Physiol Genomics, vol. 29, no. 3, pp. 312-9, 2007.
, , “A novel dynamic impact approach (DIA) for functional analysis of time-course omics studies: validation using the bovine mammary transcriptome.”, PLoS One, vol. 7, no. 3, p. e32455, 2012.
, “Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows.”, Physiol Genomics, vol. 32, no. 1, pp. 105-16, 2007.
, “Old and new stories: revelations from functional analysis of the bovine mammary transcriptome during the lactation cycle.”, PLoS One, vol. 7, no. 3, p. e33268, 2012.
, “Physiological and Nutritional Roles of PPAR across Species.”, PPAR Res, vol. 2013, p. 807156, 2013.
, “Ruminant metabolic systems biology: reconstruction and integration of transcriptome dynamics underlying functional responses of tissues to nutrition and physiological state.”, Gene Regul Syst Bio, vol. 6, pp. 109-25, 2012.
, “Selection and reliability of internal reference genes for quantitative PCR verification of transcriptomics during the differentiation process of porcine adult mesenchymal stem cells.”, Stem Cell Res Ther, vol. 1, no. 1, p. 7, 2010.
, “Systems physiology in dairy cattle: nutritional genomics and beyond.”, Annu Rev Anim Biosci, vol. 1, pp. 365-92, 2013.
,