
BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research
libraries, and research funders in the common goal of maximizing access to critical research.

Cover Estimations Using Object-Based Image Analysis Rule Sets Developed Across
Multiple Scales in Pinyon-Juniper Woodlands
Author(s): April Hulet , Bruce A. Roundy , Steven L. Petersen , Ryan R. Jensen , and Stephen C. Bunting
Source: Rangeland Ecology & Management, 67(3):318-327. 2014.
Published By: Society for Range Management
DOI: http://dx.doi.org/10.2111/REM-D-12-00154.1
URL: http://www.bioone.org/doi/full/10.2111/REM-D-12-00154.1

BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and
environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published
by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of
BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries
or rights and permissions requests should be directed to the individual publisher as copyright holder.

#812

http://dx.doi.org/10.2111/REM-D-12-00154.1
http://www.bioone.org/doi/full/10.2111/REM-D-12-00154.1
http://www.bioone.org
http://www.bioone.org/page/terms_of_use


Rangeland Ecol Manage 67:318–327 | May 2014 | DOI: 10.2111/REM-D-12-00154.1

Cover Estimations Using Object-Based Image Analysis Rule Sets Developed Across
Multiple Scales in Pinyon-Juniper Woodlands

April Hulet,1 Bruce A. Roundy,2 Steven L. Petersen,3 Ryan R. Jensen,4 and Stephen C. Bunting5

Authors are 1Research Ecologist (Postdoctoral), USDA–Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR 97720,
USA; 2Professor and 3Associate Professor, Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA; 4Associate

Professor, Geography Department, Brigham Young University, Provo, UT 84602, USA; and 5Professor, Department of Rangeland Ecology and
Management, University of Idaho, Moscow, ID 83844, USA.

Abstract

Numerous studies have been conducted that evaluate the utility of remote sensing for monitoring and assessing vegetation and
ground cover to support land management decisions and complement ground measurements. However, few comparisons have
been made that evaluate the utility of object-based image analysis (OBIA) to accurately classify a landscape where rule sets
(models) have been developed at various scales. In this study, OBIA rule sets used to estimate land cover from high–spatial
resolution imagery (0.06-m pixel) on Pinus L. (pinyon) and Juniperus L. (juniper) woodlands were developed using eCognition
Developer at four scales with varying grains—1) individual plot, 2) individual sites, 3) regions (western juniper vs. Utah juniper
sites), and 4) pinyon-juniper woodland network (all plots)—that were within the same study extent. Color-infrared imagery was
acquired over five sites in Oregon, California, Nevada, and Utah with a Vexcel UltraCamX digital camera in June 2009. Ground
cover measurements were also collected at study sites in 2009 on 80 0.1-ha plots. Correlations between OBIA and ground
measurements were relatively high for individual plot and site rule sets (ranging from r¼0.52 to r¼0.98). Correlations for
regional and network rule sets were lower (ranging from r¼0.24 to r¼0.63), which was expected due to radiance differences
between the images as well as vegetation differences found at each site. All site and plot OBIA average cover percentage
estimates for live trees, shrubs, perennial herbaceous vegetation, litter, and bare ground were within 5% of the ground
measurements, and all region and network OBIA average cover percentage estimates were within 10%. The trade-off for
decreased accuracy over a larger area (region and network rule sets) may be useful to prioritize management strategies but will
unlikely capture subtle shifts in understory plant communities that site and plot rule sets often capture.
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INTRODUCTION

Monitoring and assessing vegetation and ground cover to
detect shifts in plant community diversity, structure, and
function is the basis for planning local and regional vegetation
management actions. In order to effectively and efficiently
monitor and assess ecosystems, one must first identify which
vegetation characteristics and attributes should be measured to
meet management objectives (Pellant et al. 2005). Second, data
collection methods must be determined that are economically
feasible as well as accurate and precise enough to meet
management objectives (Coulloudon et al. 1999; MacKinnon
et al. 2011).

Remote-sensing technologies and platforms are continually
being developed and evaluated to improve our ability to
monitor, inventory, and assess large and diverse landscapes
(Booth and Tueller 2003; Hunt et al. 2003; Toevs et al. 2011)

and to reduce or complement costly field data (Laliberte et al.

2007b; Booth et al. 2008). Research studies have utilized

multiple remote-sensing spatial scales and platforms such as

satellite imagery (Ramsey et al. 2004; Bradley and Mustard

2005; Laliberte et al. 2007a; Bradley and Fleishman 2008; Karl

and Maurer 2010), high–spatial resolution imagery (Petersen

and Stringham 2008; Greenwood and Weisberg 2009; Madsen

et al. 2011; Hulet et al. 2014), and very large scale aerial

imagery (Booth and Cox 2008; Laliberte and Rango 2009;

Moffet 2009) across the Intermountain West. However, few

studies have evaluated how the specificity of object-based

image analysis (OBIA) rule sets affect the accuracy of remotely

sensed cover estimates compared to ground-measured cover

estimates of designated land cover classes.

OBIA methods differ from traditional pixel-based classifica-

tion methods (e.g., supervised classification) in that OBIA

techniques group similar, neighboring pixels into distinct image

objects within designated parameters (Riggan and Weih 2009;

Burnett and Blaschke 2013). Rule sets, which are a sequence of

processes that are executed in a defined order (Trimble 2011),

include segmentation parameters that create meaningful objects

and features and thresholds that are used to classify objects

according to designated land cover classes. Rule sets allow the

user to examine what cover classes are least distinguishable

from others and to refine specific thresholds to better capture

the variation of that class for a particular image or group of

imagery.
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Because management decisions involve ecological consider-
ations that vary from local to regional scales, further research is
needed to evaluate the selection of the appropriate size of an
area that can be accurately classified using a particular OBIA
rule set or model. This research focuses on classifying Juniperus
L. (juniper) and Pinus L. (pinyon) (P-J) woodlands across
multiple scales using OBIA techniques to describe five land
cover classes (Table 1). P-J woodlands are particularly of
interest due to their expansion and infilling into shrub–steppe
communities. As P-J woodlands expand, understory plant
species decrease (Miller et al. 2008), bare soil increases and
becomes more interconnected (Pierson et al. 2010), and fire
return intervals increase, resulting in more stand-replacement
fires (Miller and Tausch 2001).

Our primary objective was to test how the specificity of
OBIA rule sets affected remotely sensed cover measurements
from high–spatial resolution imagery (0.06-m pixel), relative to
ground-based measurements on P-J expansion woodlands. Rule
sets were developed at four scales with varying grains: 1)
individual 0.1-ha plots nested within individual sites (65 rule
sets evaluated); 2) individual plots grouped by site (five rule sets
evaluated); 3) plots grouped by region, or western juniper
(Juniperus occidentalis Hook.) sites vs. Utah juniper (Juniperus
osteosperma [Torr.] Little) sites (two rule sets evaluated); or 4)
all P-J woodlands plots that span across the Great Basin (one
rule set evaluated). We hypothesized that cover percentage
estimates from high–spatial resolution imagery would fall
within an acceptable error rate (6 5%) when compared to
ground measurements, which were considered to be correct,
using rule sets that were developed for individual plots and
plots grouped by site. For rule sets developed from plots
grouped by region and network (all plots), we expected that
cover percentage estimates from high–spatial resolution imag-
ery would be sufficiently accurate (within 6 10% of ground
cover measurements) to support the management of sagebrush–
steppe ecosystems. In order to further improve the application

of remote-sensing technology, our secondary objective was to
identify diagnostic features (e.g., mean brightness) of land
cover types that could be used to classify P-J woodlands across
the Great Basin.

METHODS

Study Locations
This study was conducted on five pinyon and/or juniper
woodlands that were part of the Joint Fire Sciences Sagebrush
Steppe Treatment Evaluation Project (SageSTEP). Sites span the
Great Basin and were found in Oregon (Devine Ridge: lat
43871038 00N, long �118896001 00E), California (Blue Mountain:
lat 418092 00N, long �120889055 00E), Nevada (Marking Corral:
lat 39839044 00N, long�115815075 00E), and Utah (Stansbury: lat
40858017 00N, long �112866016 00E; Onaqui: lat 40821031 00N,
long �112847027 00E). These sites provided a wide range of
semiarid sagebrush–steppe communities that varied in eleva-
tion, soil type, and climate and have been invaded by Juniperus
occidentals Hook. (western juniper), Juniperus osteosperma
(Torr.) Little (Utah juniper), and/or Pinus monophylla Torr. &
Frém. (singeleaf pinyon). Specific site characteristics have been
described by McIver et al. (2010). Dominant vegetation types
associated with land cover classes used in this study are
described in Table 1.

Ground Measurements
Ground data were collected by SageSTEP field crews during the
summer of 2009 on 0.1-ha plots (30 333 m). Plot locations
within site were randomly assigned across all phases of
woodland encroachment (Miller et al. 2005). Total plots per
site included 15 from each of Stansbury, Marking Corral, and
Blue Mountain; 18 from Onaqui; and 17 from Devine Ridge
for a total of 80 plots. Cover percentage measurements were
collected within each plot using the line-point intercept method

Table 1. Land cover class descriptions with associated sites.1

Land cover class Description

Live trees Live tree cover includes Utah juniper (ON, ST, and MC), western juniper (BM and DR), and singleleaf pinyon (MC).

Shrubs Dominant shrub cover includes Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young; ON

and MC), mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana; BM, DR, and MC), antelope bitterbrush

(Purshia tridentata [Pursh] DC.; BM, DR, and ST), and dead shrubs. Yellow rabbitbrush (Chrysothamnus viscidiflorus

[Hook.] Nutt.) and other small nondominant shrubs could not confidently be distinguished from bunchgrasses and forbs

and thus were included as part of the perennial herbaceous cover class.

Perennial herbaceous vegetation (per herb) Native perennial herbaceous vegetation cover includes the following dominant species: Idaho fescue (Festuca idahoensis

Elmer; BM and DR), Sandberg bluegrass (Poa secunda J. Presl; all sites), bluebunch wheatgrass (Pseudoroegneria

spicata [Pursh] Á. Löve; MC, ON, and ST), Thurber’s needlegrass (Achnatherum thurberianum [Piper] Barkworth; DR

and MC), and needle and thread grass (Herperostipa comata [Trin. & Rupr.] Barkworth; MC).

Litter Litter cover consists of nonliving plant or animal material that rests on top of the soil surface, including detached woody

material. Due to the size of cheatgrass (Bromus tectorum L.) patches and the pixel resolution of the imagery, we were

not able to distinguish litter from annual species. Cheatgrass typically makes up less than 10% of the total litter

composition with the exception of Stansbury, where cheatgrass makes up approximately 20% of the total litter cover

class.

Bare ground Bare ground cover is composed primarily of mineral soil (. 90 %) and rock with less than 3% lichen or moss.
1BM indicates Blue Mountain; DR, Devine Ridge; MC, Marking Corral; ST, Stansbury; and ON, Onaqui.
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on five 30-m transects systematically placed across the plot.
First-contact intercept data (top vegetation canopy or ground
surface) was collected every 0.5 m, totaling 300 points per plot
(five transects with 60 points per transect), representing the
aerial view captured in the imagery. Estimates from the line-
point intercept method used in the data analysis included cover
of shrubs, forbs, grasses, litter, standing and down woody
debris, and ground surface (mineral soil, rock, lichen, or moss)
cover estimates. Percent tree cover used in the data analysis was
measured using the crown-diameter method (Mueller-Dombois
and Ellenberg 1974).

Imagery Acquisition
Four-band red, green, blue, and near-infrared (0.7–1.0 lm)
imagery was acquired at Blue Mountain, Devine Ridge, and
Marking Corral on 18 June 2009 and at Onaqui and Stansbury
on 19 June 2009 by Aero-graphics, Inc. (Salt Lake City, UT).
Imagery was collected with a Vexcel UltraCamX digital camera
(Vexcel Imaging GmbH, Graz, Austria) on board a turbocharged
Cessna 206 aircraft at an approximate photo scale of 1:5 556
(0.06-m pixel size). The aircraft was flown between 2 100 and
2 800 m above ground level, depending on individual site
conditions, at an approximate speed of 180 km � h�1. The
camera was equipped with forward-motion compensation,
airborne global positioning system (GPS) capabilities, and an
Applanix inertial measurement unit (IMU). To support the
airborne GPS data, the flight crew utilized US Continuously
Operating Reference Station/International Global Navigation
Satellite System Service stations or dedicated GPS base station at
regional airports within the project area. Ground control points
were used to post process the airborne GPS/IMU data to yield air
point coordinates for each exposure accurate to within 6 0.06
m. Analytical digital aerotriangulation was used to extend full
control for each stereomodel and to tie ground control points
and airborne GPS/IMU air point data. Digital images were
orthorectified using specialized software created by the Vexcel/
Microsoft digital imaging partnership by Aero-graphics, Inc.

Plot Extraction
Ground plots were georeferenced on imagery using GPS points
collected with a WAAS-enabled Garmin GPSmap 60CS unit
(Olathe, KS) in the center and at a designated corner of each of
the 80 plots. On the ground, plots were positioned so that the
33-m baseline was at the bottom of the slope parallel to the
contour of the landscape. To minimize true image location
inaccuracies, we utilized the two WAAS-enabled GPS points,
protocols for positioning each plot on the landscape as
explained above, and two photographs collected on the
baseline of each plot. Individual plots from the landscape
scene were visually shifted until the estimated inaccuracies were
within 1–2 m of the ground plots. Individual plots from the
imagery were then extracted so that measurements would be
made on the same experimental unit for both OBIA and
ground-measured cover classes using ArcMap 10.0 (ESRIArc-
Map 1999–2010).

Image Processing
The software eCognition Developer 8 (Trimble Germany
GmbH, Munich, Germany) was used for our OBIA. Rule sets

were developed at four spatial scales with varying grains: 1)
individual 0.1-ha plots, 2) individual sites (Devine Ridge, ~ 15
ha; Blue Mountain, ~15 ha; Marking Corral, ~ 16 ha;
Stansbury, ~5 ha; and Onaqui, ~20 ha), 3) regions (i.e.,
Devine Ridge and Blue Mountain make up the western juniper
region and Marking Corral, Stansbury, and Onaqui make up
the Utah juniper region), and 4) all sites evaluated in this study
across the SageSTEP network (henceforth be referred to as
‘‘network’’).

Rule sets were developed using an initial subset of the total
plots (three training plots per site for a total of 15 plots) to
determine features (spectral, spatial, textural, and contextual
information) and thresholds (e.g., reflectance values associated
with the brightness feature) that would correctly classify image
objects created in the segmentation process (Hulet et al. 2013;
Table 2; Fig. 1). Prior to segmentation, imagery was filtered to
remove noise and detail (extraneous information irrelevant to
the OBIA due to the scale of our land cover classes vs. the pixel
resolution). The segmentation process consisted of a multi-
resolution segmentation algorithm followed by a spectral
difference segmentation algorithm that created meaningful
image objects from pixels based on relative homogeneity
criteria (Trimble 2011; Table 2; Fig. 1). Plots that captured
the largest range in plant community composition and bare
ground cover and that were distributed across the study site
were selected as training plots. Rule set thresholds associated
with specific features and land cover classes were manually
adjusted through several iterative classification trials to
optimize our OBIA cover estimates with the ground-measured
cover data. Once a rule set was developed from the training
plots, it was applied to a second subset of the plots (validation
plots). Cover estimates generated from validation plots were
calculated by totaling the area of each land cover class and
dividing it by the total area of the plot. Remotely sensed cover
estimates were then compared to ground-measured cover
estimates for the data analysis.

Study Design

Site and Plot Rule Sets. Site-specific rule sets were developed
first using the image processing steps described above.
Thresholds were adjusted to optimize OBIA cover estimates
with ground-measured cover data within an acceptable error of
6 5% for each land cover class by site. For individual 0.1-ha
plots, rule sets that were originally developed for each of the
individual sites were used. Thresholds associated with features
in the individual site rule sets were adjusted or refined for each
validation plot, essentially creating 65 rule sets with a range of
thresholds used to estimate cover percentage.

Regional and Network Rule Sets. Rule sets on the regional
(western juniper vs. Utah juniper sites) and network (all sites)
scales were also based on site-specific rule sets. Specific features
used in site rule sets for each cover class were first summed
(e.g., if the NDVI was used in 40 of the 65 rule sets to classify
live trees, it received a score of 40). Features that were used
most often (i.e., had the highest score) were selected for each
land cover class. The selected features were then evaluated
using the training plots to determine which one(s) would most
accurately estimate the specified land cover class for both the
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region and the network rule set. Thresholds associated with the
features were adjusted to optimize our OBIA cover estimates
with the ground-measured cover data. Because both our
regional and our network rule sets needed to account for more
variation found within the imagery due to atmospheric
conditions, timing of imagery acquisition, and vegetation
differences across all sites, we increased our acceptable error
rate to 6 10% for each land cover class. Once our training plot
rule set was developed for each scale, it was applied to a second
subset of the plots (65 validation plots) for data analysis.

Statistical Analysis
To determine whether the mean value responses were different
between the OBIA data and ground-measured data, we used a
paired t test for each land cover class by rule set scale. Results
from the paired t tests were evaluated for significance using the
Bonferroni correction (P , 0.05/5). Statistical assumptions for
normality and homogeneity of variance were assessed. Ground
measurements were always subtracted from estimates derived
from OBIA to determine if OBIA consistently overestimated or
underestimated the land cover class of interest. Mean difference
values for each land cover class by rule set scale were compared
using 1-way ANOVA and the Tukey–Kramer honestly signif-
icant difference multiple comparison method with a signifi-
cance level of P , 0.05. The correlation coefficient (r) was used
to assess the relationship between ground-measured data and

OBIA data for each land cover class by rule set scale. It should
be noted that for each of the rule set scales evaluated, the same
ground-measured data were used in the comparisons; therefore,
the difference lies in the OBIA cover estimates extracted from
the various rule sets.

RESULTS

Live Trees
Live tree canopy cover percentage measurements for site and
individual plot rule sets did not differ between the OBIA and
ground measurement methods; however, for both network and
regional rule sets, OBIA estimates were significantly less
(P , 0.05) than ground measurements of live tree cover (Table
3). When running the network rule set for individual sites,
OBIA estimates for tree cover were significantly less than
ground measurements by an average of 10.5% at Devine Ridge,
Marking Corral, and Stansbury. With the regional rule set,
OBIA estimates were significantly less than ground measure-
ments for tree cover on average by 10% at Marking Corral and
Stansbury.

Shrubs
Shrub canopy cover percentage measurements did not differ
between the OBIA and ground measurement methods for the

Table 2. Description of filters, segmentations, and features used to classify land cover classes in this study. Image layer or band(s) used in specific
processes are italicized. Further detail and formulas for calculating filters and features can be found in Trimble’s eCognition Developer reference book
(Trimble 2011).1

Description

Image filters

Median filter Replaces the pixel value with the median value of neighboring pixels.

Convolution filter Gaussian smoothing filter (Gaussian blur) uses a kernel, which is a square matrix of a value that is applied to the

image pixels. Each pixel value is replaced by a center-weighted average of the square areas of the matrix

centered on the pixel.

Segmentations

Multiresolution segmentation (convolution

filtered RGB bands)

Applies an optimization procedure that locally minimizes the average heterogeneity of image objects for a given

resolution.

Spectral difference segmentation Merges neighboring objects according to their mean layer intensity value.

Features

Spectral

Mean brightness Sum of mean values of RGB for an image object divided by 3.

Mean (B and NIR bands) Layer mean value calculated from the values of all pixels forming an image object.

Band ratio (G bands) Layer mean value of an image object divided by the sum of all layer mean values.

NDVI Normalized difference vegetation index¼ (NIR�R)/(NIRþR).

SAVI Soil-adjusted vegetation index¼ [(NIR�R)/(NIRþRþ L)] � (1þ L); L¼ 0.5.

HSI transformation: hue (median filtered

RGB bands)

Hue (color) transformation equations are based on the maximum (greatest) RGB value and the minimum (smallest)

RGB values.

Spatial

Area Number of pixels forming an image object.

Contextual

Relative border Describes the ratio of the shared border length of an image object (with a neighboring image object assigned to a

defined class) to the total border length.
1R indicates red; G, green; B, blue; NIR, near infrared; and HSI, hue, saturation, and intensity.
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network, region, and site rule sets (Table 3). However, at sites

where antelope bitterbrush was present (Blue Mountain,

Devine Ridge, and Marking Corral), significant differences

between the OBIA and ground measurement methods were

observed (P , 0.05). Using site rule sets, Blue Mountain OBIA

shrub cover estimates were 5% higher than ground measure-

ments. At Devine Ridge and Stansbury, OBIA shrub cover

estimates were lower than ground measurements by approxi-

mately 3%. Differences between OBIA shrub and ground-

measured cover were significant (P , 0.05) for the individual

plot rule set and were on average 1.3% less than ground

measurements. However, the average mean difference range for

the individual plot rule set was smaller than the other rule sets
but skewed toward underestimating shrub cover when com-
pared to ground measurement, and this likely contributed to
the significant difference (Table 3).

Perennial Herbaceous Vegetation
Although no significant differences were found between the
OBIA and ground measurement methods for perennial
herbaceous vegetation at any of the rule set scales evaluated
(Table 3), interesting trends were observed. OBIA estimates
from the network rule set for western juniper sites (Blue
Mountain and Devine Ridge) on average were 10% greater
than the ground estimates for perennial herbaceous vegetation.
For Utah juniper sites (Marking Corral, Stansbury, and
Onaqui), OBIA estimates were 4% less than the ground
estimates on average for the perennial herbaceous vegetation
when using the network rule set.

Litter and Bare Ground
Litter cover percentage estimates were significantly different
between OBIA and ground measurement methods for all rule
set scales. When comparing regional differences, western
juniper sites were not significantly different between the two
methods; however, OBIA litter cover estimates on Utah juniper
sites were on average 9% less than ground-measured litter
cover. Bare ground estimates were not significantly different
between OBIA and ground measurements methods using the
network, region, and site rule set (Table 3). However, at the
Stansbury site, OBIA estimates were significantly less than
ground measurements for bare ground for our network (14%
less) and regional (11% less) rule set. Bare ground OBIA cover
was consistently less than ground measurements at all sites by
an average of 2% for the site and plot rule sets with the
exception of Devine Ridge, where bare ground OBIA cover was
1.3% higher than the ground measurements. When running the
region and network rule set, bare ground OBIA estimates of
percent cover were consistently more than the ground
measurements by an average of 5.5% with the exception of
Blue Mountain, where OBIA bare ground estimates were less
than ground measurements by an average of 5.6%.

Correlation Coefficients
Cover percentage estimates from OBIA and ground measure-
ments were highly correlated for land cover classes (excluding
litter) using the individual plot rule sets (r¼0.94–0.98) and
only slightly lower for the site rule sets (r¼0.78–0.95). Litter
correlations were lower for all rule sets (r¼0.24–0.74), and this
is likely an artifact of our hierarchical classification techniques
for litter. Because coarser rule sets (region and network)
account for more plot variation over larger spatial extents,
lower correlation values were expected (Fig. 2).

DISCUSSION

Karau and Keane (2007) suggested that when determining the
optimal landscape scale, the grain should be small enough to
detect subtle changes resulting from management actions but
large enough to reflect the characteristic variability of

Figure 1. Hierarchical classification process using eCognition Developer
for all plots. Bold print represents land cover classes listed in the order
classified. Notes in parentheses indicate feature(s) and band(s) used to
classify land cover classes. Italicized features were used to classify land
cover classes for all rule sets (individual plot, site, region, and network);
standard text features were used to classify land cover classes for
individual plot and site rule sets only. RGB indicates red, green, and blue
bands; NDVI, Normalized Difference Vegetation Index; Rel. border, relative
border; IR, infrared band; SAVI, Soil-Adjusted Vegetation Index; and HSI,
hue, saturation, and intensity transformation.
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Figure 2. Regressions of percent cover estimates from object-based image analysis (y-axis) on ground measurements (x-axis) using plots across all
study sites (N¼65). Each row represents a land cover class (live trees, shrubs, perennial herb¼perennial herbaceous vegetation, litter, and bare ground).
Columns represent each rule set scale (network, region, site, and individual plot) used to evaluate land cover classifications. A 1:1 dashed line is shown to
aid comparison.
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important ecological processes, such as fire, succession, and the
biophysical environment. The complexity of a particular
ecological system (e.g., number of components and interaction
among components) often will depend on the scale of the
analysis (Turner 1989; Wu 1999), which in turn will influence
the selection of the rule set scale. Our research suggests that
high–spatial resolution imagery and OBIA rule sets can capture
most variations for our designated land cover classes; however,
trade-offs regarding the specificity of rule sets are likely. For
example, the trade-off for decreased accuracy of our land cover
classes over larger areas (region and network rule sets) may be
useful to prioritize fuel management strategies in P-J wood-
lands but will unlikely capture subtle shifts in understory plant
communities that may be detected using individual plot or site
rule sets. On the other hand, the trade-off for increased
accuracy using individual plot rule sets is that it is likely not a
practical scale for most management practices and requires the
greatest amount of time to adjust thresholds for each individual
plot.

For live trees, perennial herbaceous vegetation, and bare
ground, OBIA cover percentage estimates continually improved
as the grain used to create rule sets decreased. For live trees,
average mean differences between OBIA and ground measure-
ments were observed for both network and region rule sets.
Live tree cover was underestimated for these rule sets, likely
due to shadows. Shadows influence most remote-sensing
classification processes, and although shadow effects can be
minimized by collecting imagery close to solar noon or even
creating high–dynamic range nadir images (Cox and Booth
2009), shadow inaccuracies often occur. On a site level, we
could adjust for specific shadows using expert knowledge of
tree canopies; however, when total shadow cover ranges from
, 1% to 15.5% of the total plot cover, it was difficult to
combine (merge and grow) tree objects (Hulet et al. 2013)
consistently across all sites for both the region and the network
rule sets.

The distinction of litter from other land cover classes is not
always possible due to similar colors, textures, and shapes
between image objects (Duniway et al. 2012). Our underesti-
mation of litter for all rule sets may be an artifact of the
hierarchical design we used to classify litter (Fig. 1). Because we
typically classified the more distinguishable land cover classes
first (i.e., trees, bare ground, and shrubs), unclassified objects
were often classified litter without establishing features specific
for litter cover. When analyzed by site, Stansbury’s OBIA litter
cover percentage was consistently underestimated, while bare
ground cover percentage was consistently overestimated when
compared to ground measurements. One probable cause for
this is the patchy nature of cheatgrass cover. Although
cheatgrass was present at all sites, it made up approximately
20% of the litter land cover class at Stansbury and , 10% at all
other sites. Because it was a small component specific to
Stansbury, regional and network rule sets did not account for
this anomaly, and cheatgrass was often misclassified as bare
ground.

Atmospheric properties typically play the largest role in
feature class selection and are often the most difficult to
control. Although our high–spatial resolution imagery was
collected within 2 d, spectral radiance values for specific land
cover classes (i.e., live trees) had wide ranges of spectral values.

Thresholds associated with object features must be adjusted to
compensate for these differences, thus explaining one potential
factor influencing our results from rule sets applied over
various spatial scales. In addition to spectral features, other
features, such as relative border (spatial feature) and the
associated thresholds, were also adjusted to accurately classify
land cover types. For example, western juniper canopies were
less compact than Utah juniper canopies, requiring different
thresholds to grow and merge segmented objects. Variations in
plant structure and composition will also likely contribute to
the overall accuracy of the rule set. Site and individual plot rule
sets had thresholds that were refined for smaller areas,
increasing the accuracy of the OBIA when compared to ground
measurements. Region and network rule sets had thresholds
that were more general to capture more of the variation over
larger areas, decreasing the accuracy somewhat when com-
pared to ground measurements.

Multiple texture features were explored but were not
included in this analysis due to our segmentation parameter
selection (Fig. 1). With smaller objects, we essentially increased
the homogeneity of each object and increased our edge effect,
reducing texture analysis possibilities (Laliberte and Rango
2009). As shown in Figure 1, we consistently classified more
spectrally distinguishable land cover classes first for all rule
sets. Hierarchical, self-organization criteria were useful when
describing our land cover classes, especially when extending
rule sets to larger areas.

Results are specific for our high–spatial resolution imagery and
should not automatically be extended to other P-J woodlands.
One of the limitations of OBIA is that it is highly dependent on
the user and will likely vary even among experienced analysts;
however, the trends found in this study concerning the utility of
rule sets at multiple scales will likely be consistent. Further
research should include testing the repeatability of features used
to describe P-J woodland cover classes across multiple spatial
resolutions and extents. Additionally, further research should
relate classified images and patterns extracted through OBIA
techniques to ecological functions and processes.

MANAGEMENT IMPLICATIONS

Our intent was to test how the specificity of OBIA rule sets
affected the accuracy between object-based image analysis
cover and ground-measured cover percentage estimates from
high–spatial resolution imagery. Our results suggest that rule
sets created for site and individual plot scales most accurately
account for specific site anomalies; however, network and
regional rule sets average cover percent estimates were within
10% of the ground data for all land cover classes. Although
land management objectives will ultimately drive the selection
of the spatial scale and extent, we recommend using site-
specific rule sets for high–spatial resolution imagery when
possible. Site-specific rule sets can better account for variation
found in vegetation and ground cover while reducing shadow
effects. Also, because imagery is often collected at different
temporal scales, it is difficult to account for atmospheric
variations found within the imagery when classifying a broad
range of sites. Rule sets defined at regional and network scales
may aid in prioritizing P-J woodlands that have a higher risk

67(3) May 2014 325



for catastrophic wildfire events due to the accumulation and
continuity of fuels or increased soil erosion potential; however,
subtle shifts in understory vegetation, including weed inva-
sions, may be missed.

Furthermore, this study shows the utility of high–spatial
resolution imagery and object-based image analysis techniques
for monitoring and assessing vegetation and ground cover. Rule
sets developed on ground-measured plots (0.1 ha) were
compared over larger scales using a secondary subset of
ground-measured plots. In combination with imagery acquisi-
tion, land managers could systematically place ground-mea-
sured plots across an area of interest that would capture the
variation found on that specific site and then use those plots to
develop rule sets that could be applied across the site to support
land management decisions and complement ground measure-
ments at the landscape level.
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