

Influence of scions and rootstocks on vine vigor in response to high nitrogen availability

Landry Rossdeutsch, Laurent Deluc, Paul Schreiner and Patricia Skinkis

Grapevine vigor = shoot growth potential

Grapevine vigor = shoot growth potential

Scion X Rootstock X Nitrogen availability

Goal: identify mechanisms involved in the scion-rootstock-nitrogen interaction

7

2

How scions and rootstocks regulate C and N metabolism at whole plant level?

Objectives

Part 1:

How scion and rootstock contribute respectively to the vigor response?

Part 2:

Do N uptake and transport in rootstocks

account for vigor response?

Mechanisms occurring in shoot

Mechanisms occurring in roots

Part 1: Experimental designs

Pinot Noir clones

	1		Jackson	
Rootstocks		RG	X	
	vigor	3309C		
oots	cted	101-14		
ď)e(11020		

_	Expected vigor		
1	Jackson	Dijon	Pommard
RG	X	X	X
3309C			X
101-14			X
101-14 1103P			X

Scions and rootstocks variability trial:

- > 2017: N availability response
 - Moderate Nitrogen (MN: 4mM)
 - High Nitrogen (HN: 8mM)
- 2018: N reserve remobilization
 - Low Nitrogen content
 - High Nitrogen content

Evaluation of vigor and metabolites allocation:

- Metrics: stem length, leaf area, gas exchange, biomass (leaves, stem, trunk, roots)
- <u>Colorimetric assays</u>: Soluble sugars, insoluble starch, free amino acids, nitrate

Part 1: Experimental designs

Pinot Noir clones

y	?	
Ĺ	5	
	Ì	
7	7	
Ė	Š	
	,	
	2	l

_	Expected vigor		
1	Jackson	Dijon	Pommard
RG	X	Х	Х
3309C	Х	Х	Х
	Х	Х	Х
101-14 1103P	Х	Х	Х

Scions and rootstocks variability trial:

- > 2017: N availability response
 - Moderate Nitrogen (MN: 4mM)
 - High Nitrogen (HN: 8mM)
- 2018: N reserve remobilization
 - Low Nitrogen content
 - High Nitrogen content

Evaluation of vigor and metabolites allocation:

- Metrics: stem length, leaf area, gas exchange, biomass (leaves, stem, trunk, roots)
- <u>Colorimetric assays</u>: Soluble sugars, insoluble starch, free amino acids, nitrate

Scions and rootstocks <u>interaction</u> trial:

- > 2018 & 2019: N availability response across years
 - Moderate Nitrogen
 - High Nitrogen

Part 1: Vigor of Pinot noir clones grafted on RG

2017: N availability response

- N supply did not affect stem length
- Expected scions vigor when grafted

Part 1: Vigor of Pinot noir clones grafted on RG

2017: N availability response

- N supply did not affect stem length
- Expected scions vigor when grafted

2018: N reserve remobilization

- N reserve affects stem length
- Order of scions vigor is maintained

Differences in scions vigor is not affected by N supply but by C assimilation capacity (data not shown)

Part 1: Rootstocks influence on Pommard vigor

2017: N availability response

 Differences in vigor responses to N supply that do not support common knowledge

Part 1: Rootstocks influence on Pommard vigor

2017: N availability response

2018: N reserve remobilization

 Differences in vigor responses to N supply that do not support common knowledge

- N reserve affects stem length
- Non-conserved behavior across years

Part 1: Biomass allocation among rootstocks

Part 1: Biomass allocation among rootstocks

- In response to nitrogen availability, biomass allocation differs between rootstocks.
- Higher N stored for 101-14 and 1103P (data not shown)

Biomass allocation response among rootstocks affects N storage capacity

Plant material: Riparia Gloire or 1103Paulsen grafted to Pommard

Plant material: Riparia Gloire or 1103Paulsen grafted to Pommard

- Capacity of N uptake (Not presented)
- Regulation of N uptake

Root harvest

Nitrate uptake measurement

Root labeling with 1mM of ¹⁵NO₃

Gene expression analysis (influx and efflux transporters)

Regulation of nitrate uptake

- Maximum nitrate uptake observed after 8 hours
- Same capacity of nitrate uptake (data not shown)
- Same regulation of genes involved in nitrate influx (data not shown)

nsporter

Gene expression of nitrate efflux transporter

❖ Time X Genotype

 Gene expression is not affected by N re-supply

Main genotype effect

Genotypic difference in gene expression for the nitrate efflux transporter

Gene expression of nitrate efflux transporter

❖ Time X Genotype

 Gene expression is not affected by N re-supply

Main genotype effect

- Genotypic difference in gene expression for the nitrate efflux transporter
- Nitrate efflux transporter is also involved in N root-to-shoot transport (Taochy et al., 2015)

Part 2: Nitrate root-to-shoot transport

Part 2: Nitrate root-to-shoot transport

Plant material: Riparia Gloire or 1103 Paulsen grafted to Pommard

Steady state treatments:

High N (2.4mM)

Low N (0.8mM)

Plant growth (12 weeks)

Collection of leaf xylem sap

Organization harvest:

- 1. Leaf transpiration (LiCor)
- 2. Leaf xylem sap (pressure chamber)
- 3. Leaf area
- 4. Leaf sample
- 5. Root sample

Gene expression and ¹⁵NO₃ analysis

Part 2: Nitrate root-to-shoot transport

 Higher ¹⁵N flow in 1103P results of higher transpiration and xylem sap loading

Conclusions

Genetic variability observed:

- Vigor
- C and N metabolites allocation
- Biomass allocation
- Carbon assimilation
- Nitrogen transport

Mechanisms linked to vigor response:

- Carbon metabolism can explain variability of scions vigor
- N availability affects rootstocks vigor response:
 - Different biomass allocation strategy which affect N storage capacity across years
 - Different N transport which need further characterization

C and N metabolites response

- Amino acids concentration increases in all plant part.
- Remobilization of sugars and starch to sustain
 N assimilation

 Nitrate in root and Amino acids were used to sustain the growth in N limiting availability

Nitrate uptake properties

Regulation of nitrate uptake

- Maximum nitrate uptake observed after 8 hours
- Two nitrate uptakes transport system

No difference between rootstocks

Carbon metabolism is different between scions

Soluble sugars content in leaves and roots

Dijon

Scion

Jackson

Pommard

Insoluble starch content in leaves and roots

Nitrogen reserve is different between rootstocks

Total amino acids content at the end of 2017

Increasing biomass allocation to roots is responsible for higher amino acids storage while no difference are observed at the concentration level.

Amino acids content in roots at the end of 2017

Amino acids concentration in roots at the end of 2017

