Dr. Alec Levin, Viticulturist and Assistant Professor, Department of Horticulture OWRI Grape Day April 26th, 2022

OPTIMIZING IRRIGATION INITIATION IN OREGON VINEYARDS () & \$\mathbb{R}\$

When should you turn on the water?

 Initiating irrigation schedule is a critical annual mgmt. decision.

 Significant impacts on current and next year's crop.

 Delays have important tradeoffs that are goal-dependent.

(Way too early) Conclusion

After one year, stem water potential (SWP) initiation thresholds:

To optimize	SWP	Parameter gain	Yield loss
Yield	≥ -7 bar		
Brix	-10 bar	+0.2°	-7%
Total wine anthocyanins	-12 bar	+13%	-15%

Materials and METHODS

Vineyard description and management

Site	Elevation (ft.)	Clone	Year planted	Pruning	Mgmt.	Soil Texture Class	Available Water Supply (in.)
Eagle Point	1,495	Pommard	2017	Cane	Conv.	loam- gravelly clay loam	2.98
Jacksonville	1,675	Pommard	2014	Spur	Conv.	gravelly silt loam	5.76
Ashland 	2,059	Wadenswil	2012	Cane	Organic	silty clay loam	5.62

^{*}All sites planted on 7 x 4 ft. spacing and used 3309C rootstock

Irrigation treatments

Figure 3 The relationship between stem water potential (Ψ_{stem}) measured on three grapevine cultivars and vapor pressure deficit (VPD) at the time of measurement. Other information is as given in Figure 1 (n = 28).

 $SWP_{ns} - SWP_{abs} = \Delta SWP$

Irrigation treatments

Treatment	ΔSWP threshold for irrigation (bar)
T1 (control)	-2
T2	-4
T3	-6
T4	-8
T5	-10

All plots irrigated at 70% estimated ET_c after initiation

How treatments were applied

Measurements

- Seasonal data:
 - Weekly SWP with PMS 615
 - Temp and RH
- Harvest data:
 - Yield components and berry chemistry (Brix/pH/TA)
 - Flavonoids (HPLC)
- Winemaking

Results ENVIRONMENTAL CONDITIONS

Total monthly growing degree days

Total monthly precipitation*

Total monthly ET_o

Average monthly wind speed

Results INITIATION DATES, APPLIED WATER, AND SWP

Estimated ET_c and applied water

Initiation dates and total applied water

Vowiahla	1 T 1	Sites			
Variable	Irrigation Treatment -	Eagle Point	Jacksonville	Ashland	
	T1	June 1	July 5	June 16	
	T2	June 22	July 12	June 27	
Initiation date	T3	June 22	July 19	July 4	
	T4	July 3	July 29	July 28	
	T5	July 3	Aug. 9	Aug. 23	
	T1	8.9	5.0	9.1	
A saltada atau	T2	8.1	4.5	8.1	
Applied water (in.)	T3	8.1	4.0	7.4	
	T4	7.0	3.3	5.0	
	T5	7.0	2.4	2.7	

Δ baseline SWP

Actual SWP vs. Δ baseline SWP

Irrigation treatment

Vineyard

- Eagle Point
- ▲ Jacksonville
- Ashland

Canopy size at veraison

Results YIELD, HARVEST CHEMISTRY, AND WINE ANTHOCYANINS

Linear reductions in berry size and yield

	Tuestassast					
Variable	Treatment –	Eagle Point	Jacksonville	Ashland	All	
Berry weight (g/berry)	T1	0.90	1.15	1.15	1.06	
	T2	0.85	1.05*	1.08	0.99*	-6%
	T3	0.85	1.03**	0.92***	0.93***	-129
	T4	0.75**	0.99***	0.83***	0.86***	-19%
	T5	0.73***	0.84***	0.77***	0.79***	-25%
Yield (tons/ac)	T1	5.0	6.5	4.3	5.2	
	T2	4.0	6.1	3.7	4.5*	-149
	T3	4.1	5.8	3.8	4.4*	-15%
	T4	3.5*	6.0	3.2**	4.1 ***	-229
	T5	3.3*	5.5	2.6***	3.7***	-28%

Fruit chemistry at harvest: sugar

	Tuesday					
Variable	Treatment -	Eagle Point	Jacksonville	Ashland	_ All	
	T1	20.9	25.1	22.3	22.8	
Total soluble	T2	20.8	26.0	22.3	23.0 +(
solids	T3	21.0	25.8	21.4	<i>22.7</i> -0	
(Brix)	T4	22.2**	25.0	20.3***	<i>22.7</i> -0	
	T5	21.2	24.8	20.3***	22.1 -0	
Total hexose (mg/berry)	T1	187	289	259	240	
	T2	176	273	242	230	
	T3	180	265*	197***	214**	
	T4	165	253**	168***	196***	
	T5	155**	207***	165***	176***	

Wine anthocyanins

Results OPTIMIZING INITIATION

Optimizing for yield

Optimizing for Brix

Optimizing for wine anthocyanins

Summary and PRELIMINARY CONCLUSIONS

Summary

- Treatments successfully implemented (for the most part) at each site.
- Large differences across sites in dry-down dynamics:
 - Fast and early
 - Fast and late
 - Slow
- Large differences across sites/treatments in applied water amounts:
 - 2.4 to 9.1 in.

Summary

 Yield was strongly and linearly reduced at each site with increased delays in irrigation initiation.

• Brix response varied somewhat across sites, but on average was quadratic with increased delays in irrigation initiation.

• Wine anthocyanin response varied strongly across sites – but was generally quadratic from T1 to T4, but T5 highest (in 2 of 3 sites).

(Way too early) Conclusion

After one year, stem water potential (SWP) initiation thresholds:

To optimize	SWP	Parameter gain	Yield loss
Yield	≥ -7 bar		
Brix	-10 bar	+0.2°	-7%
Total wine anthocyanins	-12 bar	+13%	-15%

Lingering questions

- Carryover effects?
- Winemaking introduces
 variability. Are fruit flavonoid
 responses more consistent
 compared to wines?
- Treatment effects on fruit and wine tannins?

Acknowledgements

or.egon wine

Joey DeShields, Ricky Clark, Mariana Stowasser, undergraduates, RV growers