A step towards more sustainable vine health: the clean plant approach to grape virus disease management

Neil McRoberts
Plant Pathology Department, UC Davis
nmcroberts@ucdavis.edu

Kamyar Aram, Kari Arnold, Deborah Golino

The ostensible problem: Grape virus diseases

QBE Lab

Three-cornered alfalfa treehopper (3-CAT)

Spissistilus festinus

The actual problem: Between block infection causes shared costs and responsibilities

QBE Lab

FPS

Nurseries

Production

Consumers

the message: "Get clean, stay clean"

Starting clean with 'certified' planting stock

California
Registration and Certification
of Grapevines

3 CCR § 3024-3024.8 Last updated 2010

When does disease drive cooperation?

Plant disease properties at regional level and need for cooperative (area-wide) management

High

Disease variance among decision-makers' units

Low

Individual situations differ, Chance of crossinfection low

Need for cooperation: LOW to MODERATE

Everyone in same boat,
Chance of crossinfection low
Need for cooperation: *LOW*

Individual situations differ,
Chance of cross-infection

Need for cooperation HIGH

Everyone in same boat,
Cross-infection common
Disease ubiquitous
Need for cooperation:

MODERATE

Low

Disease capacity for spread

High

Sampling can be used to produce a supply chain with known performance for delivery of healthy vines

Assume background probability of vine being infected per year is p, so probability of staying healthy is (1-p). Probability of being healthy after t years is $(1-p)^t$.

Let V_H = value of healthy vine V_I = value of infected vine Expected value of vine at time, $t_i = \{(1-p)^t V_H\} + [1-(1-p)^t V_I]$

The certification discussion and the future: Education is the key

 $c = d \times tpp$

 $d = \text{probability of detection (sampling)} = f(n, N, p, \theta)$

tpp = diagnostic true positive proportion

Q-method study

- Q-method: Study of subjectivity
- Workshops to generate discourse (3)
- Extraction of a set of characteristic statements (47 from discourse)
- Ranking of statements by participants in Q-sort (37)
- Statistical analysis

O wad some Power the giftie gie us To see oursels as ithers see us!

Robert Burns, To a Louse (1786)

Diversity among growers/winemakers with respect to leafroll management

and clean plant programs

But they're all close together when we include nursery stock producers in the same analysis

Inter-block meta-population model

What drives the leafroll epidemic regionally?

Infected

Healthy

Yountville-Oakville neighborhood group

QBE Lab

Mealybug counts
Discussion on control
Interest in virus testing and
detection

Sampling propagated vines

Sampling the source material will be more efficient

Illustrating the scale of the problem Suppose N = 5 mother vines n = 10 budsticks from each = 50 propagated vines

Suppose we want to take Simple Random Sample (SRS) of m = 5 sticks

There are
$$\binom{50}{5} = 2,118,760$$

ways to draw the sample. $n^N=100,000$ combinations have wood from all 5 mother vines so only 100,000/2,118,760 = 0.047 (5%) of SRS capture all 5 mother vines.

Sampling propagated vines cont'd.

Sampling the source material will be more efficient

More realistic (but still tiny-size) problem Suppose N = 50 mother vines n = 100 budsticks from each vine

Suppose d = 1 infected mother vine = n*d = 100 infected daughter vines in n*N = 5000

We sample k = 20 vines off the truck using a SRS and send for testing. What is the probability we find x = 0,1, ... k infected vines in the sample?

Hypergeometric distribution

$$\Pr(X = x) = \frac{\binom{n \cdot d}{x} \binom{n \cdot N - n \cdot d}{k - x}}{\binom{n \cdot N}{k}}$$

If you don't find it, is it really not there?

$$Pr(X = 0) = (1 + n\theta)^{-N\frac{p}{\theta}}$$

Probability of not detecting disease if true vine incidence is p, group size is n and N groups of tests are made

$$p = -\theta \cdot \log(P)/N \cdot \log(1 + n\theta)$$

Maximum true vine disease incidence that could result in zero positives, given group size n, N groups, with probability P.

$$N = -\theta \cdot \log(P)/p \cdot \log(1 + n\theta)$$

Sample size required to generate zero positives, given group size n and true disease incidence p, with probability P. Larger samples will give one or more positives

Case Study

Grower decided to test using this structure:

- 5 sets (quadrats)
- 10 samples (n=10) in each set

- Each vine individually tested
- "W" formation throughout field block
 - "X" works too

Where are the positives?

GRBaV

15 positive of 50, approx. 30%

5 Quadrats of 10:

Quadrat	# Positive
1	3/10
2	2/10
3	0/10
4	0/10
5	10/10

GLRaV-3

5 positive of 50, approx. 10%

5 Quadrats of 10:

Quadrat	# Positive
1	1/10
2	0/10
3	0/10
4	0/10
5	4/10

GRBaV in the given samples

BINOMIAL

BETA-BINOMIAL

Fit Statistics	
-2 Log Likelihood	43.9
AIC (smaller is better)	45.9
AICC (smaller is better)	47.2
BIC (smaller is better)	45.5

Fit Statistics	
-2 Log Likelihood	19.4
AIC (smaller is better)	23.4
AICC (smaller is better)	29.4
BIC (smaller is better)	22.6

Label	Estimate	Standard Error	DF	t Value	Pr > t		Alpha	Lower	Upper
р	0.3	0.06481	5	4.63	0.005	57	0.05	0.1334	0.4666

Label	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	
р	0.3519	0.1738	5	2.02	0.0988	0.05	-0.09483	0.7986	
alpha	0.1928	0.1709	5	1.13	0.3105	0.05	-0.2465	0.6321	
beta	0.3551	0.3511	5	1.01	0.3582	0.05	-0.5474	1.2576	
rho (intraclass corr.)	0.646	0.2017	5	3.2	0.0239	0.05	0.1277	1.1644	

PD/GWSS project on vine health A network of neighborhoods

Kari Arnold

Kamyar Aram kamaram@ucdavis.edu

Started Fall 2016

