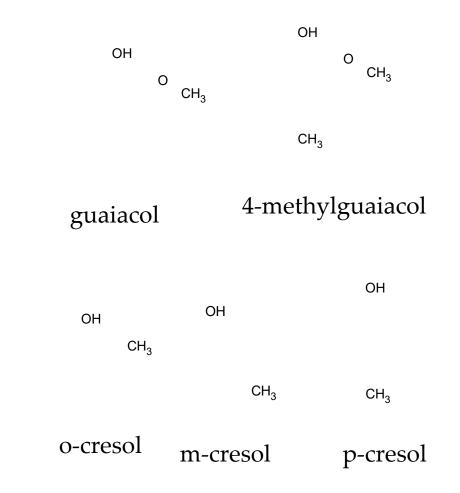
Free and Bound Volatile Phenols in Smoke-Exposed Wines-Biomarkers, Machine-learning, and Model Prediction

 Ruiwen Yang¹, Yanping L. Qian¹, Armando Alcazar^{1,2}, Ye Feng³, Ling Huang¹, Danye Zhu¹, and Michael C. Qian^{1*}

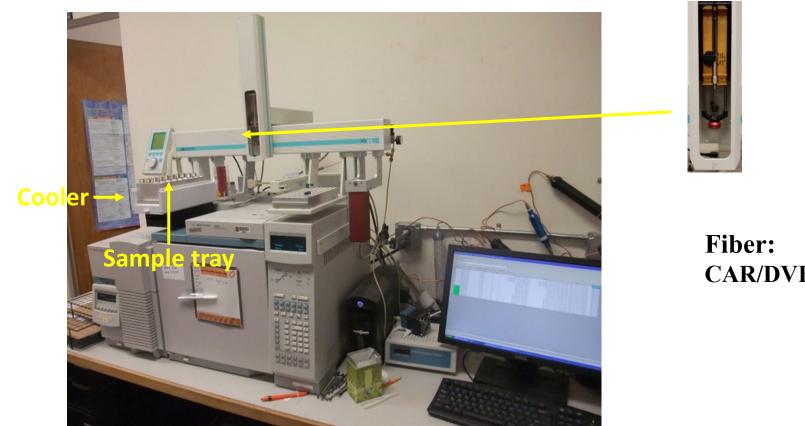
- ¹Department of Food Science and Technology, Oregon State University, 100 Wiegand Hall, Corvallis OR 97331
- ²OSU Mass Spectrometry Center, Oregon State University, Corvallis, OR 97330
- ³President and CEO, Spectra Scientific, Portland, OR 97229

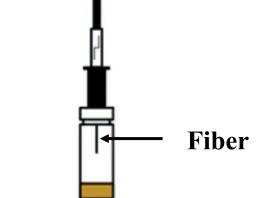


Outlines

- Introduction to smoke related volatile phenols
- Free and total volatile phenols by GC-MS
- Volatile phenol glycoside by LC-MS
- Machine-learning and modeling
- Conclusion

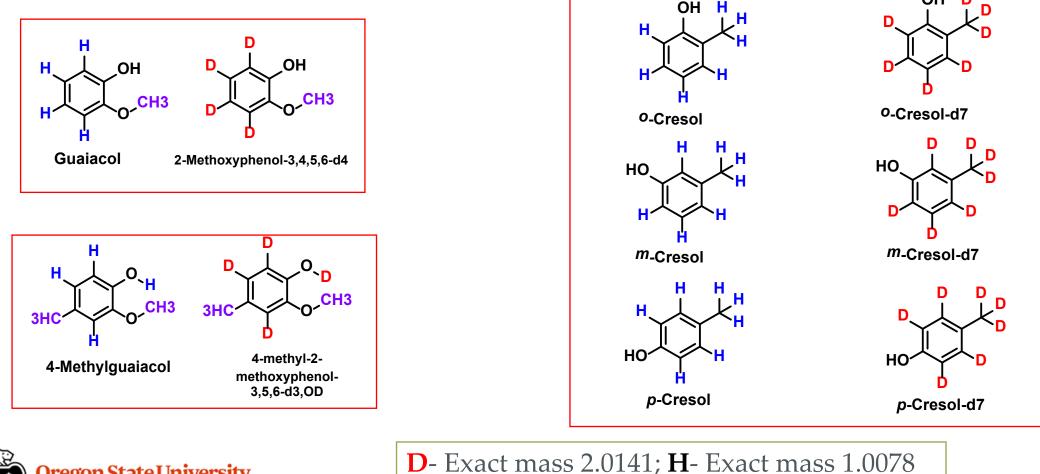
What we know for smoke compounds

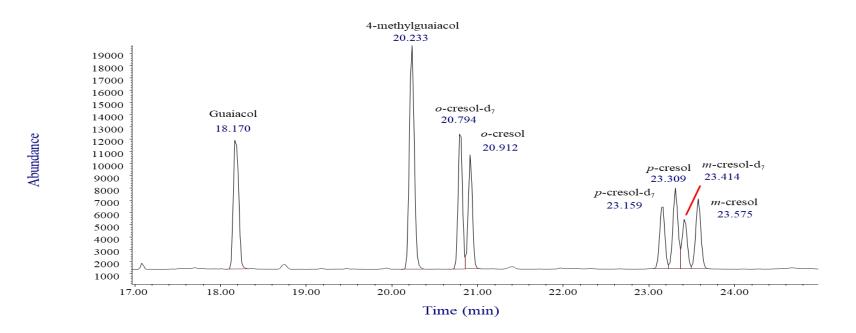

- Volatile phenols have been associated with smoke exposure
- The most frequently studied volatile phenols are guaiacol, 4-methylguaiacol and o-cresol, m-cresol and p-cresol, although a few other volatiles phenols are sometimes studied
- In the event of smoke, the grapevine can absorb these volatile phenols and convert them to phenol-glycosides
- Bound phenol glycosides do not have smoke taint, however, they can convert to free form during fermentation, aging or in mouth, impart off-flavor



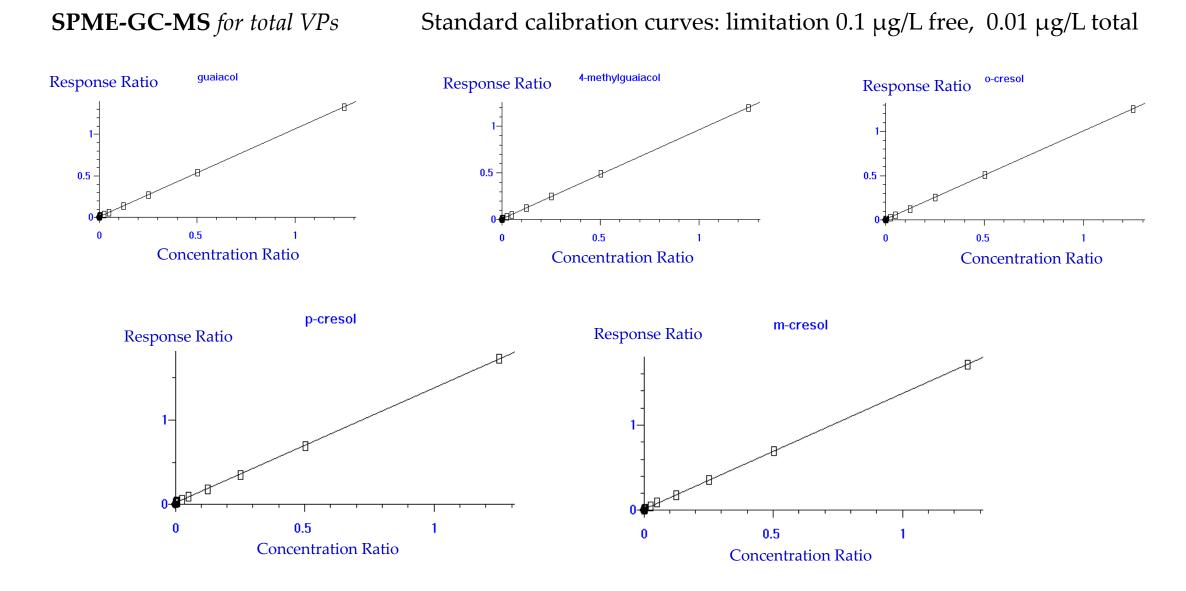
Challenges with smoke analysis

- Volatile phenols exist in normal wine, are part of wine aroma
 - Difficult to distinguish the "good" from the "bad"
- Volatile phenols present at very low concentration
 - Need reliable and sensitive instrumentation and robust analytical method


Sensitive volatile phenol analysis by Solid-phase microextraction (SPME)-GC-MS


Fiber: CAR/DVB/PDMS, 2cm

Isotope-labeled Compounds as Internal Standards to Eliminate <u>Wine Matrix Impact</u>



Free Volatile Analysis

- Free phenol analysis
 - 10 ml wine + 10 ul internal standard
 - Solid-phase Micro-extraction 50°C/25min
 - GC-MS analysis (30 min!)

Calibration Curve, Quantitation Limits

Analytical Data Comparison with Commercial Certified Lab (free)

	guaiacol (ug/L)	4-methyl	4-methylguaiacol		p-cresol	m-cresol
	Qian's lab	Cert lab	Qian's lab	Cert lab	(Cert lab	did not te	st cresols)
sample 1	4.0		1.0		3.3	1.1	1.3
Sample2	3.7	3.9	0.8	0.8	3.1	0.9	1.6
sample 3	4.0	4.2	0.9	1.1	2.8	1.5	1.4
sample 4	3.9	4.0	0.9	1.1	3.0	1.9	1.5
sample 5-1	2.9	3.0	0.7	0.7	2.4	1.2	1.0
sample 5-2 (duplicate)	3.0		0.7		2.5	0.9	1.1
sample 6	3.3	3.4	0.8	0.8	2.3	1.1	1.1
sample 7	4.2	4.4	1.0	1.1	3.0	0.8	1.4
sample 8	6.5		1.7		3.8	1.5	2.2
sample 9	21.3		5.5		8.7	2.7	6.2

Oregon State University Oregon Wine

Research Institute

Analytical Quality Control

- Verify check sample for every 20 analysis
- Duplicate analysis every 10 samples

	Guaiacol	4- methylguaiacol	m-cresol	o-cresol	p-cresol
Sample 1-1	12.06	2.36	6.78	5.88	3.67
Sample 1-2	11.85	2.36	6.68	5.95	3.76
CV (%)	1%	0%	1%	1%	2%
Check-1.0 µg/L	1.04	1.06	0.98	1.05	1.07

Total volatile phenol analysis

- Much more phenol glycosides than free volatile phenols in grapes and wine
- Direct analysis of phenol glycosides by LC-MS is costly and time consuming
- Less expensive method is "total volatile phenol analysis"
 - SPME-GC-MS analysis after strong acid hydrolysis
 - Not reliable due to artifact formation under strong acid condition and low pH
 - No good universal method
 - Results are lab-dependent (varied hydrolysis conditions)
- Total phenol analysis
 - 2 ml wine, pH 1-pH1.2/100°C/4hr
 - 8 mL citrate buffer, pH 3.5
 - SPME 50°C/25min
 - GC-MS analysis

Volatile phenol analysis in smoke exposed wines

- In 2020, we analyzed 377 Smoke exposed red wine, 91 Smoke exposed white (rose) wine
- Different degree of smoke exposure
- Analyzed both free and total volatile phenols

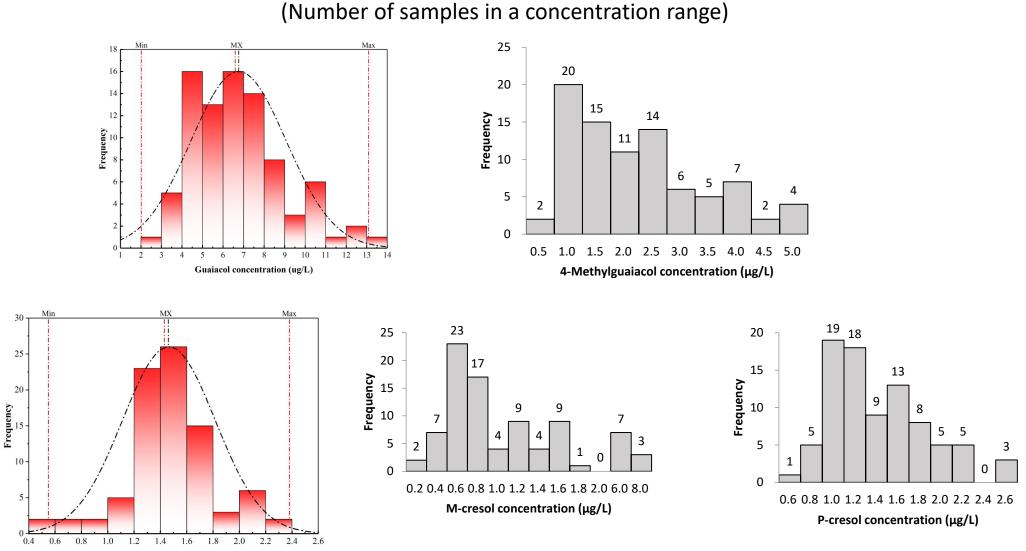
Objective 1

 Build database information for smoke exposed wine in Oregon and understand volatile phenol correlation in smoke exposed wine

Control Wine Analysis-86 Pinot noir for Baseline

- 21 wines from 2013
- 21 wines from 2014
- 24 wines from 2015
- 20 wines from 2016
- All wines were made commercially in industrial scale
- No barrel aging

Samples were obtained from Dr. Patty Skinkis


Free Phenols in 86 Control Pinot noir Wine (2013-2016)

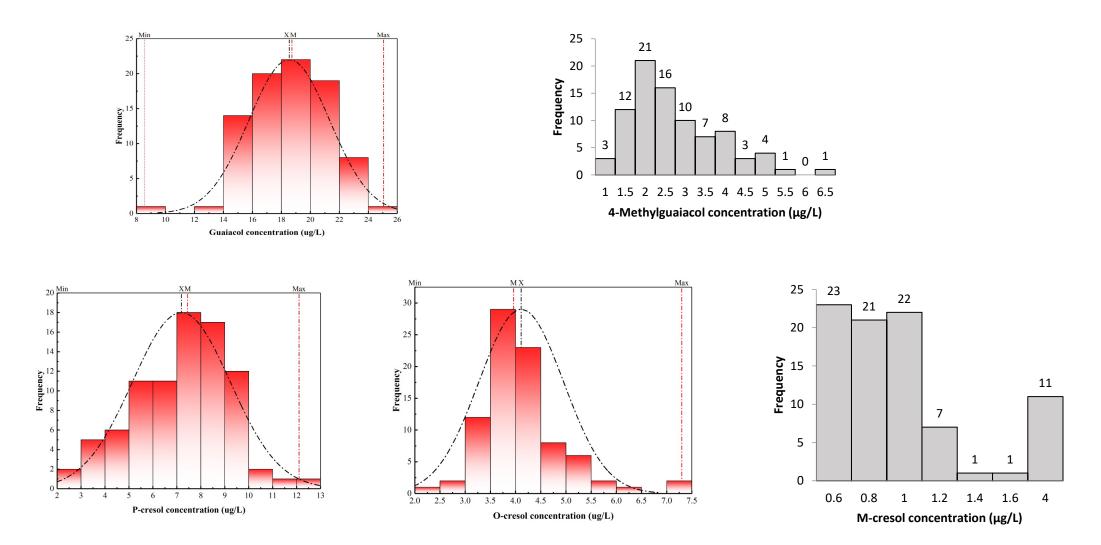
Concentration (µg/L)

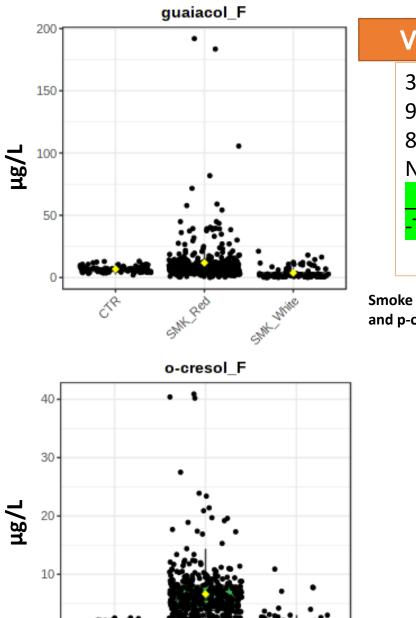
		guaiacol	4-methylguaiacol	o-cresol	p-cresol	m-cresol
Х	Average	6.76	1.98	1.46	1.31	1.16
Μ	Median	6.59	1.76	1.43	1.20	0.74
Min	Minimum	2.02	0.41	0.55	0.51	0.17
Max	Maximum	13.09	4.86	2.38	2.55	6.87

Free phenol concentration distribution in 86 control Pinot noir wine

O-cresol concentration (ug/L)

Total phenols in 86 Control Pinot noir Wines-2013-2016


Concentration (μ g/L)


		guaiacol	4-methylguaiacol	o-cresol	p-cresol	m-cresol
Х	Average	18.5	2.5	4.1	7.2	1.0
Μ	Median	18.7	2.3	4.1	7.4	0.8
Min	Minimum	8.6	0.7	2.0	2.0	0.4
Max	Maximum	25.1	6.2	7.3	12.1	3.8

Oregon State University Oregon Wine Research Institute

Total Phenol Distribution in 86 Control Pinot noir Wines-2013-2016

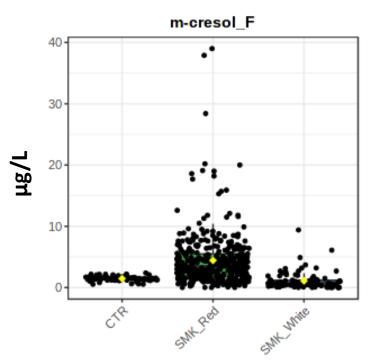
WHY WITH

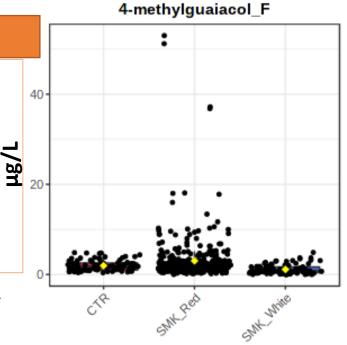
SMK R.

Volatile Phenol Analysis- Free (µg/L)

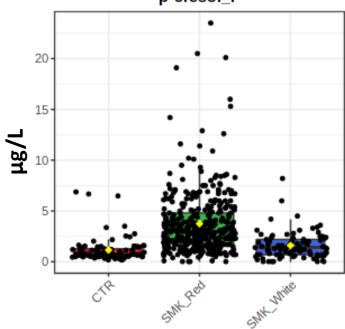
377 Smoke exposed red wine

91 Smoke exposed white (rose) wine

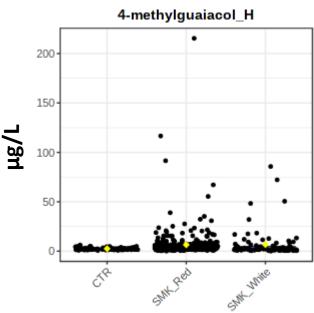

86 Control red wine

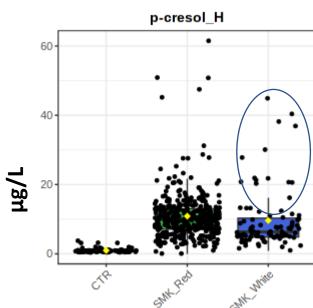

Nomenclature

_F- Free form

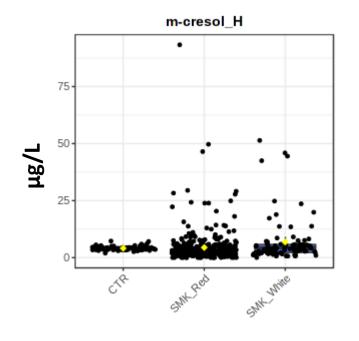

-T- total after hydrolysis (HCl, 100C/4hr) (µg/L)

Smoke exposed red wine presents the biggest dispersion of the data. o-,mand p-cresol exhibit the biggest difference across sample.


p-cresol_F






377 Smoke exposed red wine 91 Smoke exposed white wine 86 Control red wine

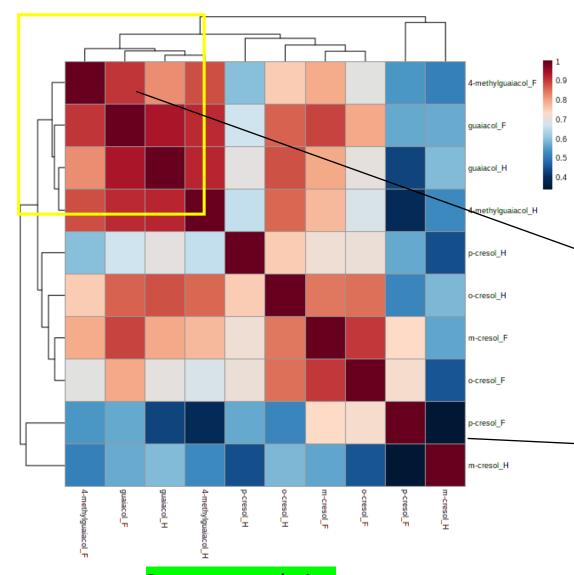
Smoke exposed red wine presents the biggest dispersion of the data. p-cresol exhibited the highest difference.

guaiacol_H

٠

٠

400


300

200

100

µg/L

Correlation Heatmap and Matrix

Heatmap was used to identify correlation of compounds. The value ranges from -1 to 1. As shown in the heatmap, all correlations are positive, ranging from 0.34 (blue, bound m-cresol vs free p-cresol) to 0.94 (deep red, guaiacol free form vs bound guaiacol).

	4-			4-	p-	0-	m-	0-	p-	m-
		guaiac ol_F	guaiac ol-T	methylgu aiacol-T	cresol- T	- cresol- T	cresol_ F	cresol	cresol _F	cresol- T
4-methylguaiacol_F	1.00	<mark>0.91</mark>	0.82	0.88	3 0.60	0.75	0.79	0.69	0.55	0.51
guaiacol_F	0.91	1.00) <mark>0.94</mark>	0.92	0.67	7 0.86	0.89	0.80	0.57	0.57
guaiacol-T	0.82	0 .94	1.00	0.92	0.70	0.88	0.80	0.70	0.43	0.59
4-methylguaiacol-T	0.88	<mark>0.9</mark> 2	0.92	1.00) 0.66	5 0.86	0.78	0.68	0.40	0.52
p-cresol-T	0.60	0.67	0.70	0.66	5 1.0 0) 0.75	0.72	0.71	0.57	0.45
o-cresol-T	0.75	0.86	6 0.88	0.86	5 0.75	5 1.00	0.84	0.85	0.52	0.59
m-cresol_F	0.79	0.89	0.80	0.78	3 0.72	2 0.84	1.00	<mark>0.90</mark>	0.74	0.56
o-cresol_F	0.69	0.80	0.70	0.68	3 0.72	1 0.85	<mark>0.90</mark>	1.00	0.73	0.45
p-cresol_F	0.55	0.57	/ 0.43	0.40	0.57	7 0.52	0.74	0.73	1.00	0.34
m-cresol-T	0.51	0.57	0.59	0.52	2 0.45	5 0.59	0.56	0.45	0.34	1.00

Pearson correlation

Control Red Wine vs Smoke Exposed Red Wine (t-test)

		FC log	;2(FC) P	-pval
377 Smoke exposed red wine	p-cresol_T	<mark>11.12</mark>	3.47	3.9E-35
86 Control red wine	o-cresol_F	<mark>5.05</mark>	2.34	2.5E-21
86 Control red wine	p-cresol_F	<mark>3.23</mark>	1.69	1.7E-13
	m-cresol_F	<mark>3.03</mark>	1.60	9.2E-10
Nomenclature	o-cresol_T	1.42	0.51	1.7E-04
F- Free form	guaiacol_T	1.57	0.66	3.1E-03
-T- After hydrolysis (HCl, 100C/4hr) (µg/L)	guaiacol_F	1.75	0.81	6.7E-03
Arter hydrolysis (i.e., 100C/4hr/ (μ g/L)	4-methylguaiacol_T	2.57	1.36	1.3E-02
	4-methylguaiacol_F	1.54	0.62	5.5E-02
	m-cresol_T	1.09	0.12	6.5E-01

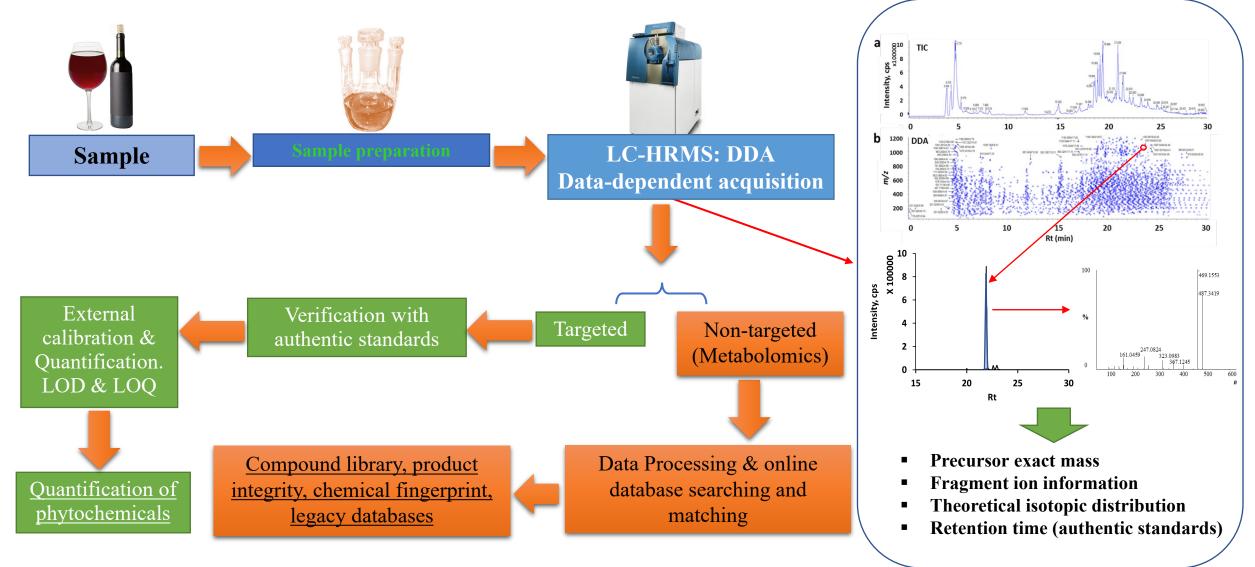
Smoke exposed red/ CTR red wine

Univariate data analysis was performed to establish differences between control and smoke exposed red wine.

Total *p*-cresol is most discriminating compound for smoke exposure, followed by free o-,p-,mcresol.

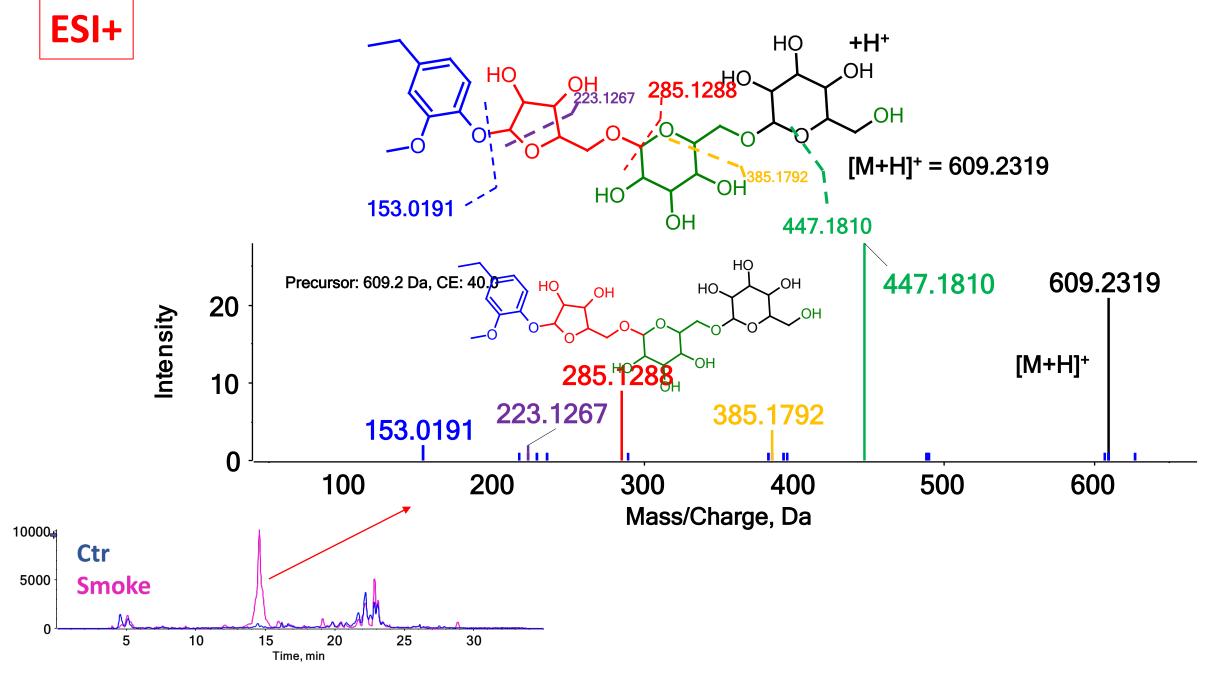
With exception of free 4-methylguaiacol and total m-cresol, all compounds were significantly higher in smoke exposed wine (p>.05). After hydrolysis, total p-cresol presented the most significant difference (FC =11.12, p=3.9 X10-35).

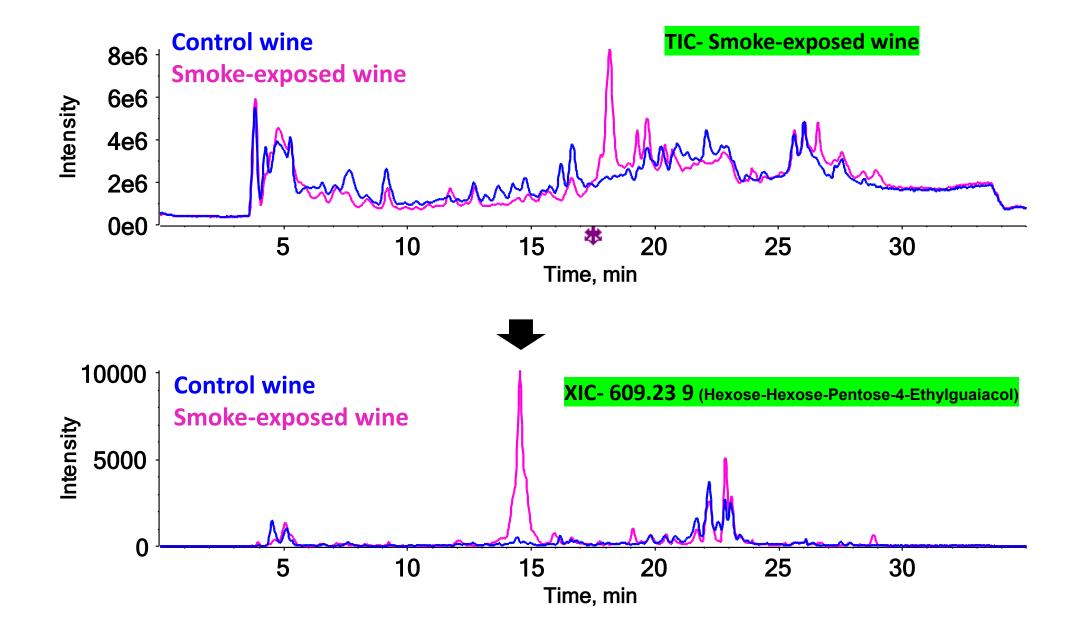
Major findings


- Smoke exposed red wine presents the biggest dispersion of the data. o-,m- and p-cresol exhibit the biggest difference across sample.
- Free guaiacol is highly correlated with free 4-methylguaiacol in smoke exposed wine
- Total guaiacol is highly corelated with free guaiacol
- m-cresol and o-cresol is highly correlated

Objective 2

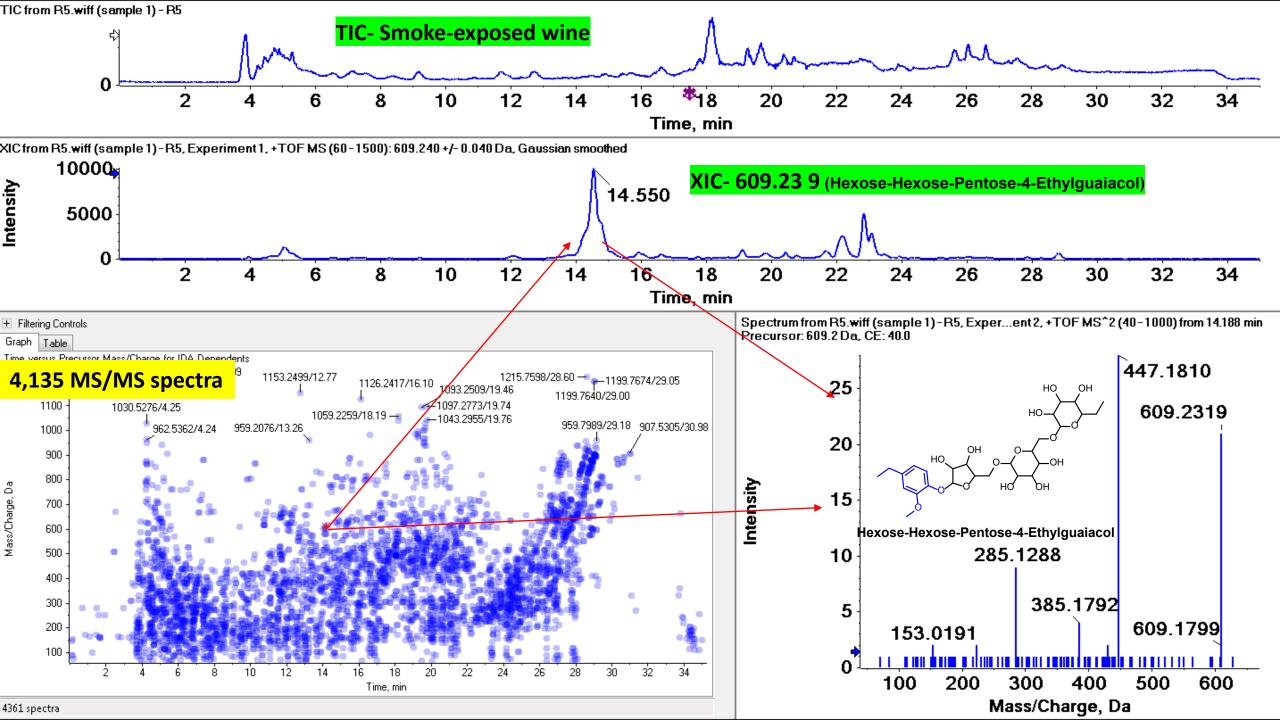
Understand how the phenol glycosides are related to the volatile phenols

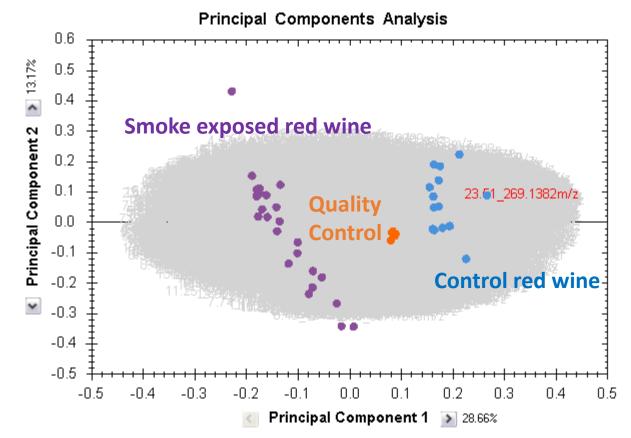

- Selected 26 different degree of smoke-exposed wine and 14 control wines
- LC-MS glycoside analysis
- GC-MS analysis for free and total volatile phenols


LC MS/MS Mass Spectral Fingerprinting and Quantification of Marker Compounds (14 control, 26 smoke exposed wine)

25

Hexose-Hexose-Pentose-4-Ethylguaiacol



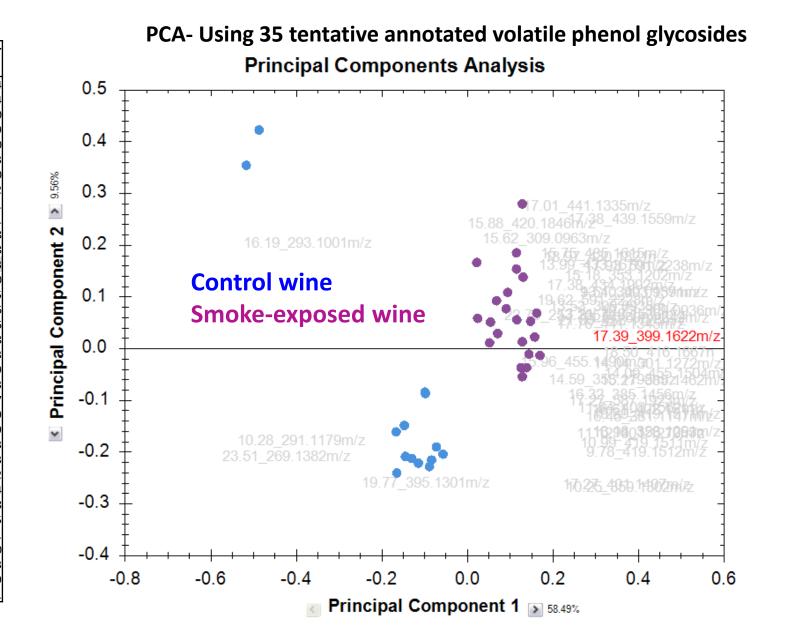

Latest Metabolomics-Data Analysis in Progenesis QI

File Review Experiment Design Setup Peak Picking Deconvolution Compounds Compounds Statistics		nonlinear A Waters Company
sentify Compounds elect your identification method:	Compound 21.03_227.0702m/z (cis-Resveratrol)	🥹 Help
🔍 Progenesis MetaScope		
@ About this method 🗢 Download	others	
Filter the compounds Using the list below, filter the compounds to show only those you want to identify.	2 an Le	
) Choose search parameters	Me	
Select your MetaScope search parameters or create a new parameter set:		
Kegg_HMDB Edit		
Search for identifications		
Identifications will be assigned to the relevant compounds automatically. Search for identifications	tions	
Vo filter applied	Data	
Detelses		
Compound Accepted ID Tag Identifications MS/MS Neutral mass m/z Adduct Compound Compound Adduct Compound Compound State Compound State Compound Compound <td>A</td> <td></td>	A	
○ 21.00_387.1633m/z 0 0 <unknown> 387.1633 1</unknown>	20 30 40 50 60 70 80 90 100 110 120 130 140 150	160 170 180 190 200 210 220 230 240 250
0 21.00_803.0623m/z 0 0 <unknown></unknown>	Legend: Matched fragment Unmatched fragment	
21.00_579.1715m/z 4 20 3 <unknown> Interventional Interventional Interventinterventional Interventinterventiona Interventional Intervention</unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown>		
0 21.00_493.1350m/z 0 0 <unknown></unknown>	Possible identifications: 55	
○ 21.00_411.3486m/z 0 0 <unknown> 0 0 <unknown> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown></unknown>	☆ Compound ID Description Adducts Formula Retention time Sco	
© 21.03_647.1607m/z 0 6 2 <unknown></unknown>		53.1 C 78.6 ^
21.03_575.2722m/z HMD80034679 1 1 vinknown> 		53 B 782 52.8 C 77.1
21.03_833.1616m/z 4 14 2 <unknown> 833.1616 1</unknown>		52.8 C 76.5
o 21.03_1140.7983m/z 0 0 <ur> unknown> 1140.7983 1 </ur>		52.6 C 76.1
0 21.03_453.1768m/z 0 0 <unknown> 453.1768 1</unknown>		52.5 C 75.8
○ 21.03_202.0854m/z 0 0 <unknown> 20</unknown>		52.3 C 74.5
○ 21:00_100.9328m/z 0 0 <unknown> 100</unknown>		52.1 3 73.6
21.10_435.1090m/z 15 4 <unknown> 43! 21.10_695.3670m/z 2 5 <unknown> 69!</unknown></unknown>		51.7 C 71.7
	* HMDB0034270 5,6-Dihydro-5-hydroxy-6-r M-H C14H12O3	50.2 C 64
2 2 ≤ unknown> 65: Company		49.5 0 60.8
21.17_535.0632 Q 09052019 Wine Neg - Progenesi Q 09052019 Wine POS - Progenesi D 09052019 Wine POS - Progenesi	☆ HMDB0127763 5-[(3-methoxyphenyl]meth M+Na C ₁₂ H ₁₄ O ₃ C	49.5 C 59.5
	☆ HMDB0030786 Marmesin M-H-H₂O C14H14O4 G	
		47.5 C 50.6
	☆ HMDB0034257 Seselin M-H C14H12O3 C	47.3 C 49.6
	* UMD00120057 6/2 hudenschut 1 op 1 vf M-H-Hp0 CUO.	A71 P A90 T
		-
		Section Complete 🏵
	DLongl Englange	
	Prenol-Explorer	

Database on polyphenol content in foods

LC-HRMS/MS Untargeted Metabolomics Analysis of Wine (14 control, 26 smoke exposed wine)

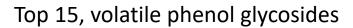
We obtained more than 4000 ions by MS/MS


Control wines and smoke exposed wines are well clustered by PCA analysis We are continuing with data mining to figure out underlying relationship

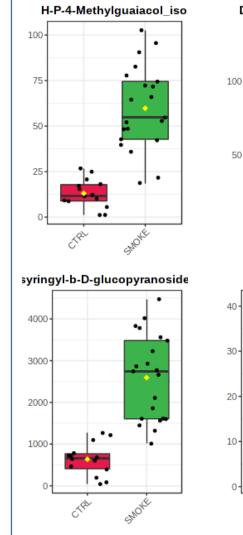
LC-HRMS/MS targeted phenol glycosides Analysis

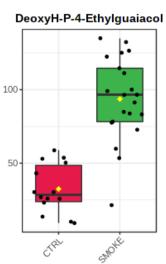
35 tentative annotated volatile phenol

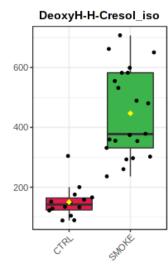
glycosides

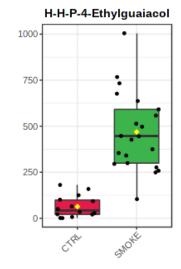

	Adducts		Mass Error
Accepted Compound ID	detected	Formula	(ppm)
syringyl-β-D-glucopyranoside_Iso	M+H, M+NH4, M+Na	C14H20O8	-3.14
syringyl-β-D-glucopyranoside	M+NH4, M+Na	C14H20O8	-2.24
DeoxyH-H-Cresol	M+NH4, M+Na	C19H28O10	-3.50
DeoxyH-H-Cresol_iso	M+Na	C19H28O10	-3.69
DeoxyH-H-P-Phenol	M+Na	C23H34O14	-4.10
DeoxyH-P-4-Ethylguaiacol	M+Na	C20H30O10	-1.93
guaiacyl-β-D-gentiobioside -Der	M+NH4	C19H28O12	-4.50
guaiacyl-β-D-gentiobioside	M+Na	C19H28O12	-4.12
guaiacyl-β-D-gentiobioside_2	M+Na	C19H28O12	-4.11
guaiacyl-β-D-gentiobioside_3	M+Na	C19H28O12	7.61
H-4-Methylguaiacol	M+NH4	C14H20O7	-3.68
H-4-Methylguaiacol_2	M+H	C14H20O7	-3.18
H-4-Methylsyringol	M+Na	C15H22O8	-1.53
H-Guaiacol	M+Na	C13H18O7	-2.00
H-Guaiacol_2	M+Na	C13H18O7	-3.35
H-Guaiacol_3	M+Na	C13H18O7	-3.56
H-H-P-4-Ethylguaiacol_Iso1	M+H-H2O	C24H36O14	-7.46
H-H-P-4-Ethylguaiacol	M+H	C24H36O14	-7.68
H-H-P-4-Ethylguaiacol_iso2	M+H-H2O	C24H36O14	-9.13
HMDB0041514	M+NH4	C18H26O10	-4.49
H-P-4-Methylguaiacol_iso	M+Na	C19H28O11	-4.63
H-P-4-Methylguaiacol	M+H	C19H28O11	-7.97
H-P-Guaiacol	M+Na	C18H26O11	-7.79
H-P-Guaiacol_Iso1	M+Na	C18H26O11	-5.29
H-P-Guaiacol_so2	M+Na	C18H26O11	-3.63
H-P-Guaiacol_iso3	M+Na	C18H26O11	-4.93
H-P-P-4-Methylguaiacol	M+Na	C24H36O15	-4.72
P-H-Cresol	M+H	C18H26O10	-6.84
P-H-Cresol_iso2	M+H-H2O	C18H26O10	-7.78
P-H-Cresol_iso3	M+H-H2O	C18H26O10	-9.25
P-H-Cresol_iso4	M+H, M+NH4, M+Na	C18H26O10	-3.61
P-P-H-Cresol	M+Na	C23H34O14	-2.80
syringyl-β-D-gentiobioside	M+NH4	C20H30O13	-4.53
syringyl-β-D-gentiobioside_iso1	M+H, M+Na	C20H30O13	-8.89
syringyl-β-D-gentiobiosideliso2	M+H-H2O	C20H30O13	-8.01

H-Hexose, P- Pentose, Iso- Isomer

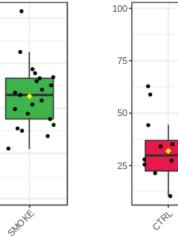

T-test

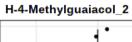

Top 8, volatile phenol glycosides ($p < 4*10^{-7}$)

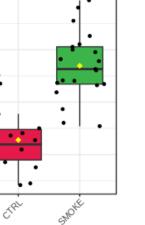


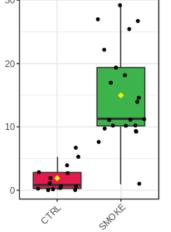

	FC	
Tentative glycoside	SMK/CTR I	raw.pval
H-P-4-Methylguaiacol_iso	4.58	2.37E-08
DeoxyH-P-4-Ethylguaiacol	2.88	2.59E-08
DeoxyH-H-Cresol_iso	2.97	3.02E-08
H-H-P-4-Ethylguaiacol	7.39	6.61E-08
syringyl-b-D-glucopyranoside_Iso	4.08	9.50E-08
H-4-Methylguaiacol	2.69	1.26E-07
H-4-Methylguaiacol_iso1	<mark>2.11</mark>	2.52E-07
H-Guaiacol	7.88	3.95E-07
P-H-Cresol_iso2	3.90	5.13E-07
syringyl-b-D-gentiobioside_iso1	2.60	8.96E-07
H-H-P-4-Ethylguaiacol_Iso1	<mark>31.88</mark>	2.21E-05
P-H-Cresol_iso3	3.52	3.23E-05
H-P-4-Methylguaiacol	2.66	4.37E-05
DeoxyH-H-Cresol	3.13	5.73E-05
syringyl-b-D-gentiobioside	5.65	8.64E-05

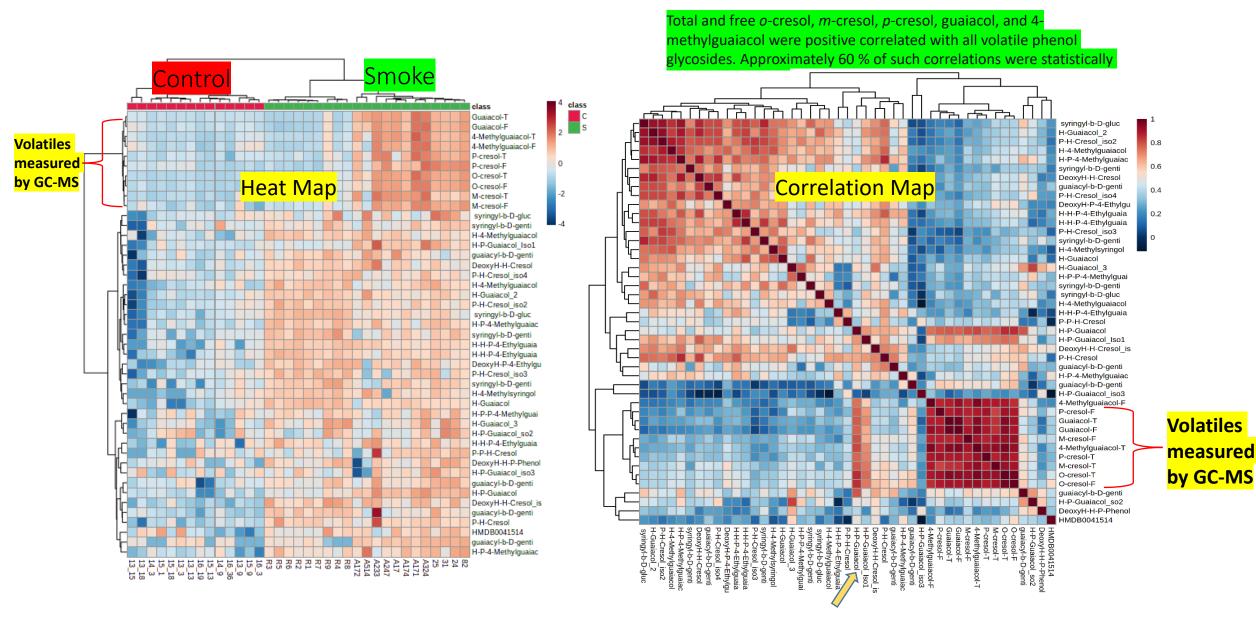
H-Hexose, P- Pentose, Iso- Isomer








CTP2



Correlation and heatmap for 35 tentative annotated volatile phenol glycosides + total and free volatiles: *o*-cresol, *m*-cresol, *p*-cresol, guaiacol, and 4-Methylguaiacol.

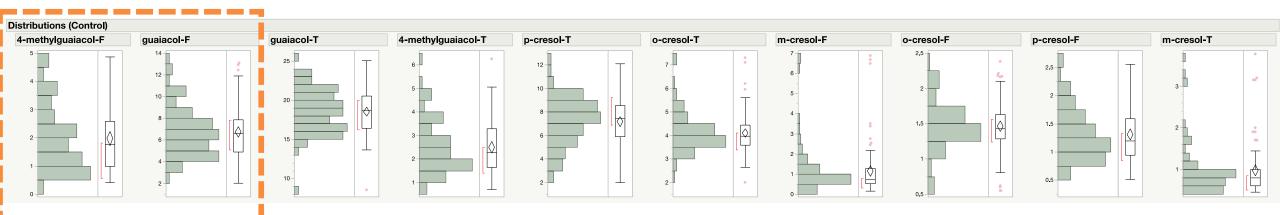
Take home message from LC-MS glycoside analysis

- With very few exceptions, volatiles measured by GC-MS and phenol glycosides by LC-MS were positively correlated
- This means higher concentration of volatile phenols predict higher concentrations of phenol glycosides and vice-versa.

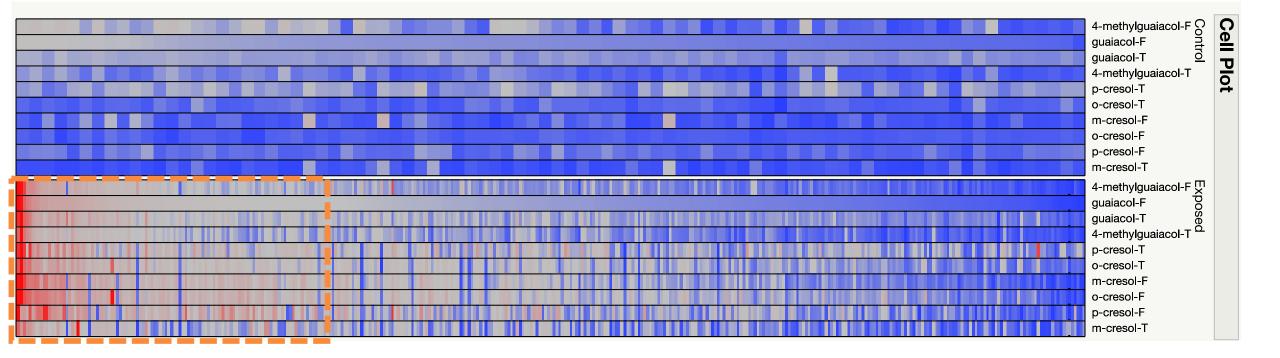
• How bad is my wine if exposed to smoke?

Smoke exposed ≠ Smoke taint

Machine learning and modeling for smoke evaluation and prediction


- 86 control wines from 2013-2016
- 377 wines from 2020 (exposed)
- Free and total volatile phenols were used as markers

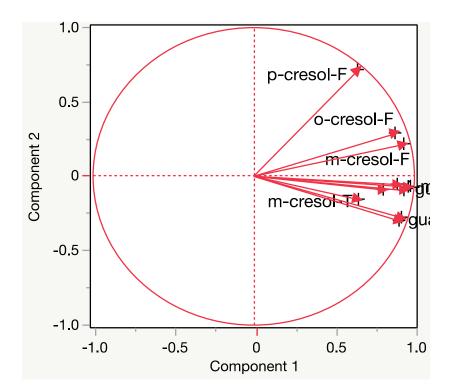
Dr. Ye Feng, Former director of Machine-learning at Lam Research


Sample Distribution

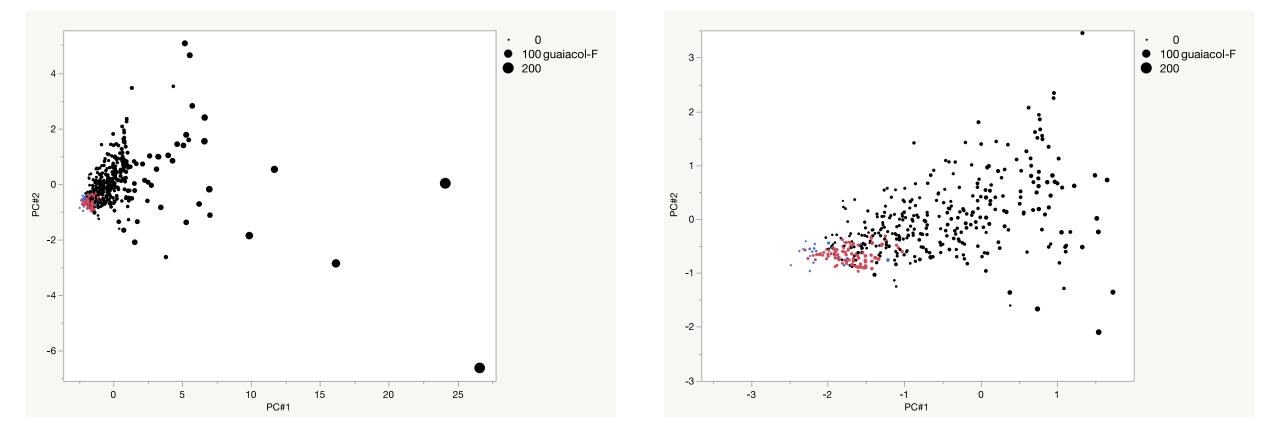
Distributions (Exposed)								
4-methylguaiacol-F guaiacol-F	guaiacol-T	4-methylguaiacol-T	p-cresol-T	o-cresol-T	m-cresol-F	o-cresol-F	p-cresol-F	m-cresol-T
	400							

Multivariate Sample Distribution

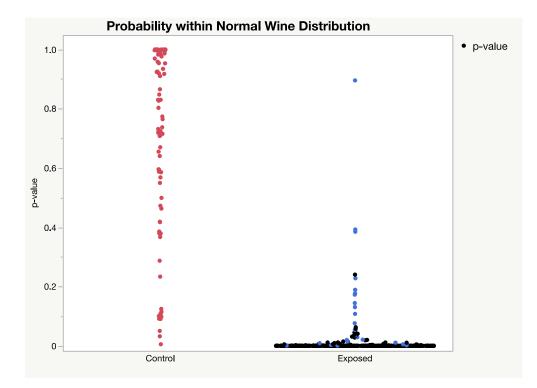
Principal Component Analysis

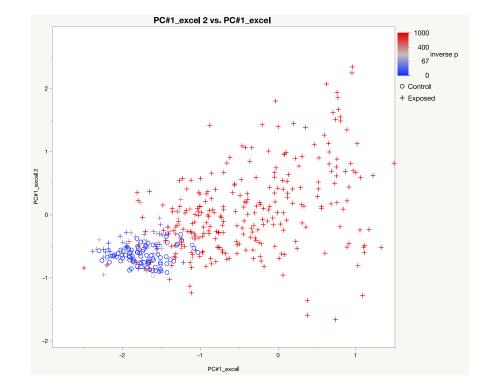

Principal Components: on Correlations							
Number	Eigenvalue	Percent	20	40	60	80	Cum Percent
1	7.4617	74.617					74.617
2	0.8564	8.564					83.181
3	0.6144	6.144					89.325
4	0.4161	4.161					93.486
5	0.3174	3.174					96.661
6	0.1303	1.303					97.964
7	0.0958	0.958					98.922
8	0.0645	0.645					99.566
9	0.0293	0.293					99.859
10	0.0141	0.141					100.000

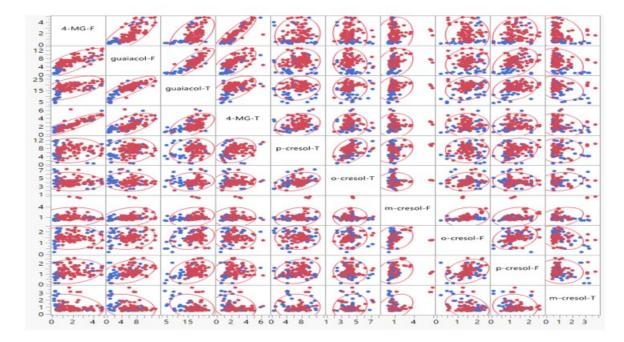
The first principal component (PC) represents overall phenolic changes


The second PC points to unique covariant fingerprints in free cresols

Eigenvectors	PC#1	PC#2
4-methylguaiacol-F	0.32844	-0.06079
guaiacol-F	0.35343	-0.07758
guaiacol-T	0.33792	-0.30178
4-methylguaiacol-T	0.33257	-0.32487
p-cresol-T	0.29652	-0.09926
o-cresol-T	0.34353	-0.10365
m-cresol-F	0.34308	0.23174
o-cresol-F	0.32346	0.31042
p-cresol-F	0.23796	0.77070
m-cresol-T	0.23985	-0.17038




Evaluation of 2020 Wines (sized by Guaiacol-F)


Evaluation of Wines (sized by p-value)



Correlation and modeling

Model prediction: p-value

3.916666667 6.592592593 -1.33112 -0.66458 -0.77733 -2.05628 $-0.74186 \quad 0.194477 \quad 4.911919 \quad 1.888081 \quad 0.544012 \quad 2.135581 \quad -0.31035 \quad 0.621221 \quad 3.411382 \quad 77.95991 \quad 6.960706 \quad 0.001055611 \quad -0.31035 \quad 0.621221 \quad 3.411382 \quad 77.95991 \quad 6.960706 \quad 0.001055611 \quad -0.31035 \quad 0.621221 \quad 3.411382 \quad 77.95991 \quad 6.960706 \quad 0.001055611 \quad -0.31035 \quad 0.621221 \quad -0.31035 \quad 0.621221 \quad -0.31035 \quad -0.3105 \quad -0.3105$ 2.972222222 5.682926829 -0.8037 -0.3853 1.622674 3.943721 4.75814 1.594477 2.511919 2.988081 1.444012 2.935581 0.889651 0.621221 1.743567 94.58311 8.444921 0.000450617 5.2 6.78125 -0.71179 -0.16982 -0.47733 1.043721 3.15814 0.694477 1.211919 4.888081 2.744012 4.635581 0.989651 2.721221 0.646487 265.8569 23.73722 3.65367E-06 4.875 6.12195122 -0.31389 -0.69874 -0.37733 1.043721 6.55814 1.594477 9.711919 5.588081 2.544012 4.035581 -0.01035 4.621221 5.480444 385.4543 34.41557 6.06225E-07 3.857142857 -1.12923 -1.13684 -1.27733 4.05814 2.394477 7.311919 4.788081 0.144012 0.035581 -0.61035 4.421221 4.537723 154.4551 13.79064 4.79318E-05 4.612244898 -4.05628 4.631578947 -0.69662 -0.07733 2.043721 8.55814 2.494477 13.31192 5.988081 2.744012 4.735581 0.189651 4.521221 11.03934 494.8929 44.18686 5.42 0.016748 1.79067E-07 4.722222222 4.885245902 -0.21436 -0.73772 -0.17733 1.743721 11.25814 3.594477 8.811919 5.788081 2.544012 3.935581 0.189651 4.621221 4.108217 367.3541 32.79947 7.65886E-07 4.882352941 5 -0.52074 -0.4816 -0.27733 1.543721 3.95814 1.994477 6.311919 4.588081 2.844012 4.135581 0.289651 2.721221 3.089621 263.8451 23.5576 3.78942E-06 -0.43869 0.022674 2.743721 7.85814 2.494477 8.011919 5.088081 3.044012 5.135581 0.489651 2.421221 5.507082 363.5363 32.4586 4.75 5.28 -0.24115 8.05747E-07 4.642857143 5.272727273 -0.86358 -0.69621 -0.57733 -0.25628 4.65814 1.894477 3.811919 4.188081 1.744012 3.135581 -0.21035 3.521221 1.490751 218.5799 19.51606 9.32128E-06 4.736842105 5.255319149 -0.53183 -0.43205 -0.07733 2.243721 6.15814 2.194477 1.511919 6.288081 2.844012 5.135581 0.189651 2.921221 1.43106 362.7333 32.3869 8.14445E-07 5.0625 6.17777778 -0.62515 -0.69753 -0.37733 1.343721 9.25814 1.994477 0.911919 5.488081 2.444012 4.335581 -0.31035 6.021221 2.103738 466.2665 41.63094 2.39647E-07 4.666666667 5.048387097 -0.03815 -0.5024 0.122674 3.043721 12.75814 3.694477 5.411919 7.188081 3.544012 4.935581 0.689651 5.021221 1.620323 436.5137 38.97444 3.3069E-07 5 5.826086957 $-0.32814 \quad -0.27774 \quad -0.17733 \quad 2.243721 \quad 8.25814 \quad 2.094477 \quad 3.211919 \quad 5.988081 \quad 3.244012 \quad 4.835581 \quad 1.089651 \quad 4.421221 \quad 4.4212211 \quad 4.42122111111111111111111111111$ 0.78918 361.4582 32.27305 8.2849E-07 4.5 8.05 -1.98962 -0.55526 -1.17733 -3.15628 -2.44186 -0.50552 -4.78808 0.688081 0.144012 1.635581 -0.51035 0.121221 2.593103 43.90425 3.920022 0.011311237 2.909090909 8.625 -1.95435 -0.52808 -0.87733 -3.55628 -4.74186 -0.90552 -3.58808 0.588081 0.344012 1.635581 -0.51035 -0.07878 1.991242 43.70191 3.901956 0.01151535 3.702970297 3.724637681 3.431154 $-0.84644 \hspace{0.1in} 8.122674 \hspace{0.1in} 30.64372 \hspace{0.1in} 58.55814 \hspace{0.1in} 18.19448 \hspace{0.1in} 11.91192 \hspace{0.1in} 13.08808 \hspace{0.1in} 7.644012 \hspace{0.1in} 9.535581 \hspace{0.1in} 2.589651 \hspace{0.1in} 12.82122 \hspace{0.1in} 7.701365 \hspace{0.1in} 12.82122 \hspace{0.1in} 12.82122 \hspace{0.1in} 7.701365 \hspace{0.1in} 12.82122 \hspace{0.1in} 12.82122 \hspace{0.1in} 7.701365 \hspace{0.1in} 12.82122 \hspace$ 2638.31 235.5634 4.53383E-11 -0.45599 0.135581 2.363636364 6.291666667 -1.78698 -0.85924 -0.87733 -4.15628 -3.44186 -0.10552 3.511919 0.388081 -0.71035 0.621221 2.938962 18.73934 1.673155 0.188994681 3.3333333333 -0.77733 -2.75628 6.074074074 -1.69191 -0.53215 -2.14186 0.194477 0.211919 0.888081 0.044012 1.035581 0.189651 0.421221 1.235536 17.03465 1.520951 0.240265045 5 5.057692308 -0.40944 -0.56437 0.122674 3.743721 7.75814 2.694477 6.011919 6.088081 1.044012 5.435581 0.289651 2.221221 4.485602 430.0916 38.40103 3.55489E-07 4.35 5.510638298 -0.66816 -0.62343 0.022674 1.943721 7.35814 2.194477 5.411919 5.188081 1.344012 3.335581 0.289651 1.721221 1.386922 162.2397 14.48569 3.80933E-05 4.791666667 5.642857143 0.23035 -0.42914 0.422674 4.743721 13.05814 3.094477 8.811919 7.188081 3.744012 6.635581 0.589651 3.721221 6.057231 624.7588 55.78204 5.70944E-08 3.916666667 6.567567568 -0.76448 -0.28099 0.422674 2.643721 5.75814 1.194477 -1.98808 5.088081 2.944012 4.835581 0.389651 1.721221 2.647964 267.3275 23.86853 3.55812E-06

- The model needs to be verified with sensory evaluation
- So the p-value should only be used as a reference!

Acknowledgement

- American Vineyard Foundation
- Oregon Wine Board
- Oregon Wine Research Institute

