

Department of Horticulture | Oregon Wine Research Institute

Applied Viticulture Research to Address Climate Change

Dr. Patty Skinkis Professor & Viticulture Extension Specialist Mathew Lange, Graduate Research Assistant Jeremy Schuster, Graduate Research Assistant

April 26, 2022 – OWRI Grape Day, Corvallis, OR

How changing climate impacts the wine industry...

Vineyard yield, fruit composition

Vine growth
Water use
Fruit ripening

Winery nutrients, fermentation

Sales
Price and market

Condition of fruit dictates amendments, process, wine style

Marketability depends on final product

Project Objectives

- Characterize seasonal soil moisture among soil types common to the Willamette Valley
- 2. Determine vine growth, water status, and berry development responses to weather and soil moisture conditions
- 3. Understand vineyard floor management impacts on different soil types

OREGON STATE UNIVERSITY 4

Experimental Design

- 1 vineyard → Newberg, OR
- Pinot noir grafted to 101-14
- Planted 2008
- Spacing 6.5' x 5'
- 3 soil types silt loam/silty clay loam

Soil Series	Parent Material
Dupee	Sedimentary
Saum	Volcanic
Woodburn-Willamette	Glacial deposits

Soil Monitoring

- Continuous:
 - Volumetric soil water content
 - Soil temperature
 - Electrical conductivity (EC)
- January 2020 present

Location	Depth	
Under-vine	18", 36"	
Alleyway	18", 36"	

OREGON STATE UNIVERSITY 6

Vine Measures

- Shoot growth
- Leaf area
- Yield
- Pruning weight
- Vine nutrient status
- Leaf water potential
- Leaf gas exchange
- Berry development curve
- Fruit ripeness and "quality" parameters

Vine Growth Response – Vigor & Yield

Woodburn-Willamette = largest vines

Soil Type	Pruning weight (lb/ft)	Cane weight (g)	Yield (lb/ft)
Dupee	0.35 b	49 b	1.08 b
Saum	0.29 b	46 b	0.99 b
Woodburn Willamette	0.58 a	78 a	1.29 a
р	0.010	0.005	0.0028

 Lower soil moisture yet less water stress in WW may be due to larger water demand or deeper roots

Berry Ripeness by Soil Type

Soil Type	TSS (Brix)	рН	TA (g/L)	Sugar/ berry (g)
Dupee	23.9 ab	3.22	7.3	0.20
Saum	24.8 a	3.40	6.0	0.21
Woodburn-Willamette	23.2 b	3.24	7.3	0.20
p	0.0122	ns	ns	ns

- Saum
 - · most advanced TSS
- Woodburn-Willamette
 - Highest fruit YAN
 - Highest leaf blade N at véraison

OREGON STATE UNIVERSITY 14

Summary – 2 Years

- Soil moisture at depth is sufficient for growth and ripening, even in dry season
- Soil impacts vine growth and N status
 - N cycling of soils
 - Soil depth
- Soil impacts vine water status
 - Water holding capacity
 - Vine root depth
 - Vine size

Mature Pinot noir x Rootstock Project

2019-2022

Rootstock Research – OSU Woodhall Vineyard

101-14 1103P 110R 125AA 140R 161-49 1616 3309C 420A 44-53 5BB **5CTE** 8BTE 99R **BOER GRAV**

own-rooted

Riparia Gloire Schwarzmann Pinot noir x 19 Rootstocks + Own-rooted

- Planted 1997
- Randomized complete block design
- 5 reps
- Spacing 7' x 4'
- Dry farmed

Objectives

- Determine phenological advancement, vine growth, and fruit productivity
- 2. Determine rootstock impact on fruit composition
- 3. Quantify vine water stress response of key rootstocks (new 2021)

Under dry-farmed conditions 2019-2022

Vine Growth Measures

Fruitfulness

Shoot growth

Leaf area Yield

Pruning weight

Fruit Composition

TSS, pH, TA

YAN

Total anthocyanin

Total phenolics

Total tannins

OREGON STATE UNIVERSITY 18

Results – Vine growth & productivity

- Phenology
 - no differences at bud break or bloom
- Shoot length (at bloom)
 - Lowest: Riparia Gloire, Schwarzmann, Boerner
 - Highest: 110R, 99R, 140R, 1616, 161-49
- Leaf area
 - Visible differences by mid-season
- Fruitfulness
 - no difference by rootstock

Rootstock Project Summary

- · Greatest impact is on vine growth and yield
 - Likely related to N tissue status
 - Vine water stress response short and long-term
- Limited impact on fruit ripeness or phenolics
- Mature vines are balancing growth and yield

OREGON STATE UNIVERSITY 2

