UV-C Light for Grapevine Disease Management

Alexander Wong and Walt Mahaffee

Grape production

- \$6.6 billion farm gate value
- \$18 billion in agritourism

Grape Production is Dependent on Fungicides

95% of yield is attributed to fungicide use

Novel chemistries cost over \$300 million and over a decade to bring to market

Fungicide resistance is emerging faster than chemistries are produced

Grape Powdery Mildew

Grape Powdery Mildew (*Erysiphe* necator)

- Obligate biotroph
- 3-5% incidence can lead to crop rejection
- 89% of active ingredient applied is to manage Powdery mildew

Grape Bunch Rot

Bunch rot or gray mold (Botrytis spp.)

Necrotrophic pathogen

 Botrytis can colonize grape tissues but not cause disease until conditions are favorable

Grapes account for 50% of the Botryticide market

Concerns with Heavy Reliance on Fungicides

Consumer demands

Production Costs

Fungicide resistance

UV-C light to control plant disease

• UV-C: germicidal radiation 200-300nm

Fungal DNA repair genes are down regulated at night

 Hypothesis: UV-C light in conjunction with fungicides will better manage disease and reduce fungicide resistant populations

Objectives

Examine UV-C efficacy to inhibit powdery mildew and Botrytis under laboratory conditions

Investigate field management of powdery mildew and Botrytis with weekly UV-C exposure

Laboratory UV-C unit

- Greenhouse light housing with two UV-C lamps
- Secured to a conveyor system to control dose

Powdery mildew germination inhibition

- One-hour dark period before exposure to simulate sunset
- Plates incubated, imaged and the hyphal area calculated to estimate growth

Powdery mildew UVC tolerance varies

Wide range of tolerance

UV-C ED ₅₀ estimates to inhibit <i>E. necator</i> conidia germination.		
Isolate	$ED_{50}(J/m^2)$	±Std. err
HO1	98	34
RMT2A	114	23
E101	122	11
DY4-2	140	15
SE7A	146	14
S402UTC	155	13
Evpop553	164	29
RC2-2	164	11
STPN667-1	178	18
DDOFS2	187	19
STPN777-1	196	20
RMT1A	205	20
HO3	205	36
CL9-3	212	16
THB	213	19
STPN777-2	219	28
PR7-67	227	13
HO2	233	32
R527ST115-1	234	74
CAT1D1	245	38

Botrytis growth inhibition

UVC exposed Botrytis conidia and 24-hour old germlings

Lab study takeaways

The effective doses seen are possible in a field setting

Powdery mildew isolates range in tolerance to UVC

Botrytis tolerance is life stage dependent

The Corvallis Dragon

- Tractor mounted array of 254nm OSRAM 55W UV-C lamps
- Irradiate one hour after sunset
- UV-C applied in conjunction with fungicide programs
- Mildew rated and sampled every other week
- Botrytis rated and sampled at harvest

Powdery mildew leaf incidence

Example: area under curve

Powdery mildew cluster severity

Botrytis Incidence

Qol (FRAC 11) resistance

2021 Field Season

UV-C dose and application frequency both increased

Maintained once a week applications

Adjust fungicide programs

Powdery mildew incidence

Powdery mildew incidence

Cluster mildew incidence

Inoculum detection

G143A – glove swabs

Cluster Botrytis Incidence

Fruit Chemistry

- Whole berry homogenate
- Brix, pH, anthocyanin, and phenolics
- No significant differences across UV-C treatments in 2020 or 2021

Conclusions

UV-C may contribute to the management of powdery mildew

Needs to be feasible for commercial vineyards

Autonomous UVC Robot

- In collaboration with Willamette Valley Vineyards and SAGA robotics
- An autonomous robotic platform for application of UVC in a vineyard
- Planned to be used in 2022

Acknowledgements

The entire foliar pathology lab: Technicians: Carly Allen, Hannah Soukup, Tara Neill

Grad students: Sarah Lowder, Chelsea Newbold, Kate Baldino

Undergrads: Jessy Brown, Kale'a Galbreath, Dani Scutero, Iris Garber, Savanah Espinosa, Destiny Perkins, Kiersten Brophy, Lexi DeFord David Gadoury and Michelle Moyer

Saga Robotics David Markel, Jim Bernau, Willamette Valley Vineyards

Matt Vanella Kelly O'Neil

Funding by Western SARE

Survey and future implementation

- Please take part in this quick (1-2 min) anonymous survey
- Required research goal of WSARE

• If interested in participating in future implementation trials,

please leave your contact info

